本文是LLM系列文章,针对《Cognitive Architectures for Language Agents》的翻译。
语言代理的认知架构
摘要
最近的努力已经将大型语言模型(LLM)与外部资源(例如,互联网)或内部控制流(例如,提示链接)结合起来,用于需要基础或推理的任务。然而,这些努力在很大程度上是零散的,缺乏构建成熟语言代理的系统框架。为了应对这一挑战,我们借鉴符号人工智能中代理设计的丰富历史,为新一波认知语言代理制定蓝图。我们首先展示了LLM与生产系统具有许多相同的特性,最近改进其基础或推理的努力反映了围绕生产系统构建的认知架构的发展。然后,我们提出了语言代理的认知架构(CoALA),这是一个概念框架,用于系统化基于LLM的推理、基础、学习和决策的各种方法,作为框架中语言代理的实例。最后,我们使用CoALA框架来强调差距,并提出未来更有能力的语言代理的可行方向。