一、FlexRAG长文本进展
现有的RAG系统在处理长篇幅的检索上下文时,需要大量的计算资源进行编码,导致运行成本高昂。
目前有相关的工作,如Figure 1 所示,其展示了与 FlexRAG 相关的技术比较,这个图说明了不同的技术是如何对检索到的上下文进行处理以提高检索增强生成(RAG)系统的效果。
一个是上下文压缩(Context Compression):将 token 嵌入(即文本中每个单词的向量表示)压缩成更紧凑的摘要向量(summary vectors)。这样做的目的是减少上下文的数据量,同时尽量保留重要的信息。通过压缩,可以减少模型处理上下文时的计算负担,提高效率。
一个是上下文过滤(Context Filtering):从输入提示中筛选出重要的 token 嵌入。这意味着只有与任务最相关的信息被保留,而其他不太重要的信息则被过滤掉。过滤有助于去除噪声和不相关的信息,使得模型能够更专注于对任务有用的信息。这个之前有说过很多,包括基于互信息方案。
一个是提示微调(Prompt Tuning):通过学习一个软提示(soft-prompt)来改善下游任务的性能。软提示是一种可训练的提示,可以帮助模型更好地理解和执行特定的任务。通过调整提示,模型可以更好地适应特定的任务,提高任务的准确性和效果。
二、FlexRAG长文本RAG压缩思路
接着说,还是图1,FlexRAG 将上述所有功能集成在一个框架中。不仅压缩上下文(summary vectors),还根据重要性对这些压缩的嵌入进行下采样(即过滤),并且学习如何优化 RAG 性能(即提示微调)。
因此,可以看看这个工作《Lighter And Better: Towards Flexible Context Adaptation For Retrieval Augmented Generation》,https://arxiv.org/pdf/2409.15699,从实现原理上看, FlexRAG包括三个方面:
一个是压缩上下文,首先,FlexRAG将检索到的上下文压缩成紧凑的嵌入表示。为了实现这一点,FlexRAG在离线阶段对外部文档进行预编码,生成压缩嵌入,并在检索到特定RAG任务的相关文档时对这些压缩嵌入进行下采样。
一个是选择性压缩,FlexRAG通过估计上下文的重要性来实现选择性压缩,采用两种估计上下文重要性: token级别估计基于LLM对输入提示中令牌的重要性估计:
句子级别估计使用通用嵌入器(如E5和BGE)来估计句子与任务提示的相关性:
压缩比分配:为了平衡压缩效果和上下文信息的保留,根据估计的重要性对上下文进行分组,并为每组分配不同的压缩比
一个是两阶段训练,第一阶段在无标签数据上进行自回归预训练,以建立压缩模块与下游LLM之间的初步对齐,预训练的目标函数是最大化基于压缩上下文的语言建模概率:
第二阶段使用指令调优数据集进行任务特定的微调,优化RAG任务的答案质量,具体基于问题和压缩检索上下文预测真实答案,
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。