在我当前的经验下,本地中尺度模型(模型体量32B、70B)这样的,并不能处理超大Token的文档处理。因此,我当前的策略是基于多级目录式的知识搜索模式。
这个技术路线有一定的创新,但很小。它的不足就是需要自己构建多级目录体系,因此还不能直接使用Dify、RagFlow的文档技术。
一、Dify和RagFlow的效果
自己实现文档处理,一个技术点就是OCR的识别。我试了下RagFlow的PDF文档识别,它虽然识别了文字,但是没有换行处理,也没有识别出章节,因此文档被扭在一块了。这种效果是不能用的。
不过RagFlow可以准确的把表格找出,它识别表格是单独的,它会把表格单独做成一个Block,但是它不能识别表格的Border,因此很可能多行文字的时候错乱了
在Dify中,换行问题比dify好。
但也可能出现错乱的情况。
表格的处理不到位,没有组织成表格。
二、UmiOCr
我还使用了UmiOCR这款软件,它集成 PaddleOCR(深度学习)与 Tesseract-OCR(传统OCR),我感觉他的准确率还是比较好的。不过他不能有效识别表格,表格的识别是一行行文字。好于Dify,dify的文字被乱换行了。水印对内容影响比较大,
三、https://mineru.net/
这款产品当前还在内测中,但我体验下来还是非常好的,它可以左右作对比做人工检查,界面清晰。
第二个优势是它能识别文字大小,在转换后还原出章节目录,这个很有用。
第三个优势是,它对于不能文字化的图,直接给出图片,这个也是值得肯定的,避免画蛇添足。
第四个优势是表格处理很尽力了,虽然还有点问题。
虽然但是,它还是有些不足。最大的问题是,它会主动把多行内容算成一行,这会导致文字错乱,跟RagFlow一样。相比之下,UmiOCr就很原生态,一行就是一行。
四、总结
可以看出,各个软件都在想方设法能够精准识别文档,奈何出现的情况千奇百怪。当然Deepseek也可以拿来做表格OCR,在表格测试也有点小问题。总之,在当前,OCR文字准确率很高了,但是因为格式错乱的问题会导致部分内容丢失、错乱。建议重要内容人工复核下,并且传递用户最原始的材料做比对。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。