在生成式人工智能(Generative AI)领域,多智能体(Multi-Agent)技术正逐渐成为各大科技巨头关注的焦点。随着OpenAI发布Swarm、微软推出Magentic-One等框架,这一领域迅速变得纷繁复杂。面对如此多的选择,如何挑选出最适合自己的Multi-Agent框架成为了许多开发者和企业面临的一大难题。今天我们将对当前市面上最热门的五大Multi-Agent框架——AutoGen(微软)、CrewAI、LangGraph(LangChain)、OpenAI Swarm和Magentic-One(微软)进行详细的剖析。
一、AutoGen:微软的早期力作,专为软件开发而生
AutoGen是微软在Multi-Agent领域推出的最早也是最受欢迎的框架之一,它专为软件开发任务设计。在AutoGen的框架下,存在两个主要的智能体:用户智能体(User-Agent)和助手智能体(Assistant-Agent)。用户智能体负责提供指令或需求,而助手智能体则负责生成并执行代码,并将结果反馈给用户或其他智能体。
AutoGen的一大特点是其强大的多智能体编排能力,特别是在处理代码任务时表现出色。此外,它还支持在智能体交互过程中提供人工指导,使得开发过程更加灵活和可控。然而,AutoGen也存在一些不足。首先,它的界面不够直观,对于非程序员来说可能存在一定的学习曲线。其次,AutoGen的设置相对复杂,尤其是在使用本地大型语言模型(LLM)时,需要配置代理服务器。因此,AutoGen更适合那些熟悉软件开发、愿意投入一定时间和精力进行学习的开发者。
二、CrewAI:快速构建演示的首选,简单易用
与AutoGen相比,CrewAI则更加注重易用性和快速构建演示的能力。它非常直观,主要依赖于提示编写来创建和配置智能体。在CrewAI中,创建新的智能体并将其添加到生态系统中非常简单,用户可以在几分钟内创建数百个智能体。这使得CrewAI成为那些希望快速构建Multi-Agent演示或原型项目的开发者的首选。
然而,CrewAI的灵活性和定制能力相对有限。它更适合处理基本用例,而不是复杂的编程任务。此外,在智能体之间的交互过程中可能会出现一些bug,这可能会影响到项目的稳定性和可靠性。尽管如此,对于那些只需要快速构建演示或原型项目、对灵活性要求不高的开发者来说,CrewAI仍然是一个不错的选择。
三、LangGraph:高度灵活,适合复杂任务
LangGraph是基于LangChain构建的Multi-Agent框架,它采用了有向循环图(Directed Cyclic Graph)的概念,使得它成为了一个高度灵活和可定制的解决方案。LangGraph不仅可以用于任何Multi-Agent任务,还支持近乎任何形式的多智能体编排应用。这使得它成为那些需要处理复杂任务、对灵活性和定制能力有很高要求的开发者的理想选择。
然而,LangGraph的文档相对匮乏,这使得初学者或编程经验较少的用户可能难以快速上手。此外,它还需要用户具备一定的编程技能,特别是对图和逻辑流程的理解。因此,LangGraph更适合那些具备丰富编程经验、愿意投入时间和精力进行学习的开发者。
四、OpenAI Swarm:新手友好,但功能有限
OpenAI Swarm是OpenAI最近推出的Multi-Agent框架,它专注于简化智能体的创建和智能体之间的上下文切换(称为Handoffs)。Swarm非常适合那些希望快速上手Multi-Agent技术的新手用户。创建简短的演示项目在Swarm中变得非常简单。
然而,Swarm的功能相对有限。它只支持OpenAI API,不支持其他LLM提供商的API。这使得它在生产环境中的部署变得困难。此外,Swarm的灵活性也不足,无法满足那些需要高度定制和灵活编排的用户需求。另外,Swarm的社区支持也相对较差,用户无法在GitHub上提交问题或获取帮助。
五、Magentic-One:微软的又一力作,简化AutoGen
Magentic-One是微软在AutoGen之后推出的又一个Multi-Agent框架。与Swarm类似,Magentic-One也致力于简化智能体的创建和运行过程。它自带了五个默认智能体,包括一个管理智能体和四个执行不同任务的智能体(WebSurfer、FileSurfer、Coder和ComputerTerminal)。这使得Magentic-One成为了一个适用于非程序员和需要快速上手的用户的通用框架。
然而,Magentic-One对开源LLM的支持相对复杂,这使得那些希望使用开源LLM的用户可能会遇到一些困难。此外,Magentic-One的灵活性也不足,更像是一个应用程序而不是一个框架。目前,Magentic-One的文档和社区支持也相对匮乏,这可能会影响到用户的使用体验和问题解决速度。
六、多智能体框架的选择建议
(一)软件开发任务
对于涉及代码生成和复杂多智能体编码工作流的任务,AutoGen 是最佳选择。其强大的代码处理能力和多智能体编排专长能够满足软件开发过程中的复杂需求,尽管设置复杂,但在专业开发场景中能够发挥出最大价值。
(二)新手入门
OpenAI Swarm 和 CrewAI 非常适合多智能体领域的新手。OpenAI Swarm 的简化创建流程和 CrewAI 的高直观性与易用性,使得新手能够快速构建简单的多智能体应用,进行初步的探索和学习,而无需面对复杂的技术难题。
(三)复杂任务处理
LangGraph 是处理复杂任务的首选。其高度的灵活性和可定制性,以及基于有向循环图的先进架构,能够支持复杂的逻辑和多样化的多智能体编排应用,适合有一定技术基础且需要应对复杂业务场景的高级用户。
(四)开源语言模型集成
在与开源语言模型集成方面,LangGraph 表现出色,能够与各种开源 LLMs 和 API 良好协作。CrewAI 也具备一定的兼容性,在选择时可以根据具体的开源语言模型需求和其他因素综合考虑。
(五)社区支持需求
如果重视社区支持,AutoGen 是一个不错的选择,其强大的社区能够为开发者提供丰富的资源和帮助,解决在使用过程中遇到的各种问题。而对于社区支持要求不高且希望快速上手的场景,CrewAI、OpenAI Swarm 和 Magentic - One 也有各自的优势。
(六)成本效益考量
Magentic - One 自带预包装设置和通用方法,可能在初始成本上具有一定优势。OpenAI Swarm 和 CrewAI 在某些情况下也可以被视为成本效益较好的选择,具体取决于项目的规模、需求和预算限制。
每个Multi-Agent框架都有其独特的优势和不足。在选择时,请务必根据你的实际需求、技能水平和预算等因素进行综合考虑。希望本文能帮助你做出明智的选择并找到最适合你的Multi-Agent框架。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。