大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是本期觉得比较有意思的论文:
1、让AI推理更准确的秘密:不是结果,而是过程
2、LLaVA-o1 简介:第一个能够自发、系统推理的视觉语言模型,类似于 GPT-o1!
1、让AI推理更准确的秘密:不是结果,而是过程
在大语言模型的发展中,链式思维(Chain-of-Thought,CoT)已经成为提升AI推理能力的重要方法。最近,一项开创性研究揭示了提升CoT效果的关键:原来中间推理步骤的准确性,比最终答案更重要!这个发现颠覆了我们以往对AI推理过程的认知。
研究团队通过理论分析发现,传统的逐步推理方法(Stepwise ICL)将每个推理步骤割裂开来,而新提出的连贯推理方法(Coherent CoT)则让AI能够综合考虑之前所有的推理步骤。就像人类解决问题时会不断回顾和调整思路一样,这种连贯的推理方式让AI具备了自我纠错的能力,显著提升了推理的准确性。
更有趣的是,研究者通过敏感性分析发现,在演示样例中,中间推理步骤的错误比最终结果的错误对AI的影响更大。基于这一发现,研究团队创新性地在演示中同时展示正确和错误的推理路径,这种方法帮助AI更好地理解和避免中间推理步骤的陷阱,实验结果证实了这一方法的有效性。
论文标题:A Theoretical Understanding of Chain-of-Thought: Coherent Reasoning and Error-Aware Demonstration
论文链接:https://arxiv.org/abs/2410.16540
2、LLaVA-o1 简介:第一个能够自发、系统推理的视觉语言模型,类似于 GPT-o1!
在人工智能不断发展的道路上,视觉语言模型如何实现更接近人类的推理能力?来自最新研究的LLaVA-o1模型给出了令人惊叹的答案。这个模型不再像传统AI那样直接给出结果,而是通过四个精心设计的推理阶段——总结、图像描述、逻辑推理和结论,模仿人类思考的方式解决复杂视觉问题。
与现有模型相比,LLaVA-o1最大的创新在于引入了"分阶段推理"机制。它就像一个认真思考的科研人员,首先梳理问题框架,然后仔细观察和解读图像细节,接着进行系统的逻辑推理,最后得出清晰的结论。这种方法不仅大大提高了推理准确性,还使AI的思考过程更加透明和可解释。
在多个权威的多模态推理基准测试中,LLaVA-o1展现出令人印象深刻的性能。仅仅使用10万训练样本,它就超越了包括Gemini和GPT-4在内的多个大型模型,为视觉语言模型的未来发展指明了一个极具前景的方向。这项研究不仅是AI推理能力的一次重大突破,更为我们描绘了人工智能向更高智能水平进化的清晰路径。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。