中央一号文件首提“农业新质生产力” 驱动农业从资源依赖向科技驱动转型

新质生产力是农业高质量发展的核心驱动力。2025年中央一号文件明确提出,“推进农业科技力量协同攻关。以科技创新引领先进生产要素集聚,因地制宜发展农业新质生产力。”

“农业新质生产力”在历年中央一号文件中被首次提出。专家表示,将新质生产力写入中央一号文件具有里程碑意义,明确了以现代科技重构农业生产力的战略方向,标志着我国农业现代化进入系统性变革的新阶段。

在这里插入图片描述

河南信阳,全自动智能化育秧工厂

农业新质生产力的核心在于构建"科技内核"

“新质生产力是农业高质量发展的核心驱动力,它通过提升生产能力、拓展生产领域、提高生产效率、增强生产韧性和增加生产收益,为实现农业现代化和强国目标奠定了坚实基础。”北京师范大学中国乡村振兴与发展研究中心主任张琦指出。

譬如,现代农业技术、智能化设备等的应用,不仅显著提高了农业生产效率和产量,还促进了农业多元化发展,增强了农业的可持续发展能力和市场竞争力,为农业强国建设提供重要支撑。

安徽省农业科学院副院长赵皖平强调,农业新质生产力的核心在于构建“科技内核”,“一是要加强种源核心技术攻关、生物育种体系建设;二是智能装备革命,包括无人化农场系统、北斗导航精量播种、智能水肥一体化等数字农业技术;三是资源效能提升,重点推进盐碱地改良、旱作节水农业和耕地质量数字化监测;四是产业形态创新,发展工厂化育苗、智慧农业等。”

在这里插入图片描述

浙江金华,无人机播撒肥料

推动农业向科技驱动型、生态友好型转型

“农业新质生产力是以现代科技为基础,通过创新手段、技术设备和管理方式,提升农业的生产效率、质量和可持续性,推动农业从传统的资源依赖型向科技驱动型、生态友好型转型。”中国社会科学院农村发展研究所研究员、农产品贸易与政策研究室主任胡冰川指出。

他表示,这一概念强调的是科技、管理、生态等多方面因素的协同作用,以满足农业生产的高效性、绿色性和可持续性需求。比如,采用智能农业、精准农业、无人机技术等,可以大幅提高作物的种植精度、生产周期和资源利用率,减少人力和物力的浪费;再如,基因编辑技术的应用可以改良作物品种,提升作物的抗旱、抗病、抗虫等性能。

张琦建议,培育农业新质生产力,需推进颠覆性农业技术创新,引领产业变革。“要推进农业科技力量协同攻关,加快科技成果大面积推广应用,优化农业要素配置,提高资源利用效率;深化农业产业转型升级,提升产业竞争力;同时,积极培育涉农新产业、新业态、新模式与新服务,拓宽农业发展路径,为农业注入新活力,推动农业现代化进程,实现高质量发展。”

在这里插入图片描述

无人驾驶智能农机

科学界定“因地制宜”标准

我国不同区域自然条件、资源禀赋差异大。如何科学界定“因地制宜”的标准?

赵皖平建议,东北平原地带应突出大马力智能农机集群和全程无人化作业体系,建设“数字粮仓”;西南山区主攻微型智能装备研发,通过山地轨道运输系统、无人机植保矩阵提升土地利用率;沿海经济带则聚焦现代设施农业,发展深蓝渔业工船、AI养殖工厂和高端种业基地,构建海陆联动的食物供给体系。

胡冰川建议,发展农业新质生产力,一是要推进农业科技力量协同攻关,加强农业科技创新和成果转化。通过整合各级各类优势科研资源,加强对关键核心技术的攻关和成果转化推广,加快农业科技成果转化为现实生产力。二是加大人才培养。围绕国家紧缺农业人才需求,引导和鼓励高等院校和农业职业院校完善和更新农业教育课程体系,培养具备创新精神和交叉学科素养的高素质农业创新人才;针对农业农村一线科技人员的教育培训,加大乡村本土人才培养力度,提升农业劳动者的科技素质和应用新技术的能力。三是推进智慧农业发展。通过智能农机和精准农业技术的应用,实现农业生产的精准化、高效化和可持续化。四是加强政策支持和保障。建立健全农业科技创新激励机制和保障措施,为农业新质生产力的发展提供政策支持和制度保障。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值