AI Agent 概念、类型、构成与工作流程全解析

1 基础概念与理论

1.1 AI Agent定义和核心思想:

什么是Agent

在人工智能领域,Agent 是一个能够感知其环境并通过执行行动来实现目标的计算实体。Agent 不仅仅是被动地接收指令,而是能够根据感知到的信息和内部状态做出决策并采取行动。

Agent的属性

AI Agent 通常具备以下一个或多个属性:

  • 自主性 (Autonomy):

    • 自主性是指 Agent 能够在没有人类或其他外部干预的情况下独立地选择和执行行动。
    • Agent 会根据自身的内部状态、目标或偏好来决定如何行动,而不是仅仅被动地接收指令。
    • 自主性使得 Agent 能够在动态和不确定的环境中独立运行,并努力实现其预设的目标。
  • 反应性 (Reactivity):

    • 反应性是指 Agent 能够感知其环境的变化,并及时对这些变化做出响应。
    • Agent 通过其感知器获取环境信息,并根据这些感知到的信息调整自己的行为。
    • 这种属性使得 Agent 能够适应环境的动态变化,并对突发事件做出快速反应。
  • 前瞻性 (Proactivity):

    • 前瞻性是 Agent 区别于简单反射系统的关键。Agent 不仅仅是对当前环境做出反应,还能主动采取行动以实现其长期目标。
    • 具有前瞻性的 Agent 会设定目标,并主动制定计划、执行一系列步骤来达成这些目标,即使当前环境中没有直接触发其行动的感知输入。
    • 这种主动性和目标导向性使得 Agent 能够更有效地完成复杂任务,例如规划和执行复杂的项目或任务序列。
  • 社交性 (Social):

    • 在多 Agent 系统中,社交性是指 Agent 能够与其他 Agent 或人类进行交互和协作。
    • 包括通过通信、协商、合作或竞争等方式与其他实体进行互动,以共同完成任务、共享信息或解决冲突。
    • 社交性使得 Agent 能够在更复杂的环境中工作,并能参与到需要协调和合作的任务中。

AI Agent与传统软件的区别

AI Agent 和传统软件虽然都是计算机程序,但在设计理念、行为模式和能力上存在显著差异。主要区别体现在以下几个方面:

  • 自主性 vs. 被动性:

    • 传统软件: 通常是被动的执行者,严格按照预设的指令和流程运行。它们的行为由程序员事先确定的逻辑决定,缺乏独立决策的能力。
    • AI Agent: 具有一定程度的自主性,能够根据感知到的环境信息和自身的内部状态(如目标、信念、意图)独立做出决策并采取行动。它们可以在没有人类直接干预的情况下运行。
  • 环境交互 vs. 静态执行:

    • 传统软件: 通常在相对静态或受控的环境中运行,对环境变化的感知和响应能力有限。
    • AI Agent: 设计用于在动态、不确定或复杂的环境中感知和行动。它们能够持续地感知环境,并根据环境变化调整行为。
  • 目标导向 vs. 任务执行:

    • 传统软件: 主要关注执行特定的任务或功能,完成预设的步骤。
    • AI Agent: 通常以实现特定目标为导向。它们会主动规划和执行一系列行动来达成这些目标,即使面对意外情况也能尝试找到实现目标的路径。
  • 学习能力 vs. 固定逻辑:

    • 传统软件: 其行为逻辑是固定的,除非程序员修改代码。
    • AI Agent: 尤其是学习型 Agent,能够从经验中学习并改进其性能。它们可以通过与环境的交互、接收反馈等方式优化自己的决策策略。
  • 适应性 vs. 刚性:

    • 传统软件: 在面对超出预设范围的情况时,往往难以适应或可能出错。
    • AI Agent: 由于其自主性、反应性和学习能力,通常具有更强的适应性,能够在变化的环境中更好地应对未知情况。
  • 复杂性与智能程度:

    • 传统软件: 解决的是结构化程度较高、规则明确的问题。
    • AI Agent: 旨在解决更复杂、更开放、需要一定智能和决策能力的问题。

AI Agent 更像是一个具有一定智能和自主性的“行为主体”,能够主动感知、思考和行动,以实现目标,而传统软件更像是一个按照既定程序执行任务的“工具”。

Agent环境 (Environment)

Agent 环境是指 Agent 存在并与之交互的外部世界。环境向 Agent 提供感知信息,Agent 通过执行行动来改变环境的状态。

Agent 环境具有以下几个关键点:

  • Agent 的外部世界: 环境是 Agent 能够感知和行动的空间。Agent 通过其感知器(Sensors)从环境中获取信息,了解当前的状态。

  • 行动的影响: Agent 通过其执行器(Actuators)在环境中执行行动。这些行动会改变环境的状态,从而影响 Agent 下一次感知到的信息。

  • 感知-行动循环: Agent 与环境之间的交互形成一个持续的感知-思考-行动循环。Agent 感知环境,根据感知到的信息和内部逻辑进行思考和决策,然后执行行动,行动又影响环境,循环往复。

  • 环境的属性: 环境的性质对 Agent 的设计和复杂性至关重要。常见的环境属性包括:

    • 可观察性: Agent 能否感知到环境的完整状态。
    • 确定性: Agent 的行动是否能完全确定环境的下一个状态。
    • 离散/连续: 环境的状态、感知和行动是有限的还是无限的。
    • 单 Agent/多 Agent: 环境中只有一个 Agent 还是有多个 Agent。
    • 静态/动态: 环境是否会随着时间改变,即使 Agent 不采取行动。
    • 离线/在线: 任务是否可以分解为一系列独立的、短期的决策,还是需要考虑长期的行动序列。

不同的环境属性要求 Agent 具备不同的感知、决策和行动能力。

Agent的性能度量 (Performance Measure)

性能度量是用来评估 Agent 在其环境中表现好坏的标准。它定义了 Agent 的目标,Agent 的设计应该以最大化性能度量为导向。性能度量应该根据具体的应用场景来定义,例如:

  • 扫地机器人: 清扫区域的干净程度、完成任务所需的时间、避免障碍物的能力、电池效率。
  • 智能客服 Agent: 用户问题的解决率、用户满意度、响应时间、处理的会话数量。
  • 游戏 AI (NPC): 玩家的挑战性、行为的真实性、完成游戏内目标的效率。

一个好的性能度量应该是客观、可衡量且能够反映 Agent 真正需要优化的目标。

1.2 AI Agent 类型

可以根据其决策方式和复杂程度分为几种不同的类型。以下是这些不同类型的详细描述:

简单反射 Agent (Simple Reflex Agent)

  • 核心思想: 这是最简单的 Agent 类型。它根据当前的感知直接映射到行动,忽略感知历史。
  • 工作原理: 遵循简单的“如果-那么”规则(Condition-Action Rule)。如果感知到某种情况,就执行相应的行动。
  • 优点: 实现简单,反应速度快。
  • 缺点: 无法处理部分可观察的环境,容易陷入循环,缺乏长期规划能力。
  • 适用场景: 环境完全可观察且确定,决策规则简单明确的任务,例如恒温器。

基于模型的反射 Agent (Model-based Reflex Agent)

  • 核心思想: 在简单反射 Agent 的基础上,增加了对环境状态的内部建模。
  • 工作原理: Agent 维护一个内部状态(Internal State),通过感知历史和行动来更新这个状态。决策基于当前的感知和内部状态,通过规则来选择行动。这个内部模型帮助 Agent 处理部分可观察的环境。
  • 优点: 能够处理部分可观察的环境,比简单反射 Agent 更灵活。
  • 缺点: 内部模型的准确性依赖于感知的质量和更新机制,模型可能不准确。
  • 适用场景: 环境部分可观察,需要一定程度的状态跟踪的任务。

基于目标的 Agent (Goal-based Agent)

  • 核心思想: Agent 拥有明确的目标,并根据目标来选择行动。
  • 工作原理: Agent 不仅维护内部状态,还拥有一个或多个目标。它会考虑行动的后果,选择能够使其达到目标的行动。这通常涉及搜索和规划算法,以找到从当前状态到达目标状态的行动序列。
  • 优点: 能够主动采取行动实现目标,适用于需要规划的任务。
  • 缺点: 规划过程可能计算量大,效率取决于规划算法的有效性。
  • 适用场景: 需要复杂规划和决策以达成长期目标的任务,例如路径规划、问题解决。

基于效用的 Agent (Utility-based Agent)

  • 核心思想: Agent 拥有一个效用函数(Utility Function),用于评估环境状态的“好坏”或行动结果的“价值”,并选择能够最大化期望效用的行动。
  • 工作原理: 在基于目标的 Agent 基础上,增加了对不同目标状态或行动结果的偏好度量。当存在多个可能的行动都能达成目标,或者目标无法完全确定时,Agent 会选择效用最高的行动。这使得 Agent 能够在不确定环境中做出更优的决策。
  • 优点: 能够在不确定环境中做出最优决策,考虑到不同结果的价值。
  • 缺点: 定义和计算效用函数可能很复杂。
  • 适用场景: 需要在不确定性下做出权衡和最优决策的任务,例如金融交易、资源分配。

学习型 Agent (Learning Agent)

  • 核心思想: Agent 能够从经验中学习并改进其性能。
  • 工作原理: Agent 包含一个学习组件(Learning Element),负责从环境反馈中学习;一个性能评估组件(Critic),提供关于 Agent 表现的反馈;一个问题生成器(Problem Generator),建议新的探索性行动以发现更好的策略;以及一个执行组件(Performance Element),负责选择和执行行动。通过学习,Agent 可以改进其规则、模型、目标或效用函数。
  • 优点: 能够适应新环境、发现最优策略、提高长期性能。
  • 缺点: 学习过程可能需要大量数据和计算资源,且可能面临探索与利用的权衡问题。
  • 适用场景: 环境未知或动态变化,需要 Agent 不断适应和优化的任务,例如机器人控制、个性化推荐。

这些类型并非完全独立,一个复杂的 AI Agent 可能结合了其中多种类型的特性。例如,一个基于目标的 Agent 可能同时也是一个学习型 Agent,通过学习来改进其规划能力。

1.3 AI Agent 的构成

一个 AI Agent 通常包含以下几个典型组成部分:

  • 感知 (Perception):如何获取环境信息。
  • 思考/决策 (Reasoning/Decision):如何处理信息并做出决策。
  • 行动 (Action):如何执行决策影响环境。
  • 记忆 (Memory):如何存储和检索信息(短期/长期记忆)。
  • 规划 (Planning):如何制定行动序列以达成目标。

感知 (Perception)

这是 Agent 与环境交互的第一步。感知模块负责从环境中获取信息。

具体实现方式取决于 Agent 所处的环境和任务类型。例如:

  • 在虚拟环境中(如游戏或模拟器),感知可能通过读取环境状态变量或接收模拟传感器数据来实现。
  • 在物理世界中(如机器人),感知可能涉及摄像头(计算机视觉)、麦克风(语音识别)、触摸传感器、雷DAR 等硬件。
  • 在信息环境中(如网络 Agent),感知可能通过抓取网页内容、监听数据流或接收 API 调用来实现。

感知模块需要将原始的环境数据转化为 Agent 内部可以理解和处理的表示形式。

思考/决策 (Reasoning/Decision)

这是 Agent 的“大脑”,负责处理感知到的信息并做出行动决策。

这一部分是 AI Agent 最核心和复杂的部分,其实现方式多种多样,取决于 Agent 的类型和智能水平:

  • 基于规则的决策: 使用预定义的“如果-那么”规则集来决定行动(如简单反射 Agent)。
  • 基于模型的决策: 利用内部环境模型来预测行动的后果,并选择最佳行动(如基于模型的反射 Agent)。
  • 基于目标的决策: 使用搜索或规划算法来找到达成目标的行动序列(如基于目标的 Agent)。
  • 基于效用的决策: 根据效用函数评估不同行动的期望价值,并选择最大化效用的行动(如基于效用的 Agent)。
  • 基于机器学习的决策: 使用训练好的机器学习模型(如深度学习模型、强化学习模型)来直接从感知中学习决策策略。大型语言模型 (LLM) 在现代 Agent 中常被用作强大的决策和推理引擎。

思考/决策模块可能还需要访问记忆和规划模块来辅助决策。

行动 (Action)

行动模块负责执行思考/决策模块做出的决策,从而影响环境。

行动的具体形式同样取决于 Agent 所处的环境和任务:

  • 在虚拟环境中,行动可能是改变游戏状态、发送消息或修改数据。
  • 在物理世界中,行动可能是移动机器人、操作机械臂或发出声音。
  • 在信息环境中,行动可能是发送邮件、发布信息或调用外部服务。

行动模块需要将内部决策转化为环境可以接收和执行的指令。

记忆 (Memory)

记忆模块用于存储 Agent 过去的感知、行动、内部状态、目标、知识等信息。

记忆对于 Agent 的学习、规划和决策至关重要,尤其是在部分可观察或需要长期推理的环境中。

记忆可以分为不同类型:

  • 短期记忆/工作记忆: 存储当前的感知和正在进行的思考过程中的临时信息。
  • 长期记忆: 存储 Agent 学习到的知识、经验、事实等,通常以知识图谱、数据库或模型的参数形式存在。

记忆模块需要高效的存储和检索机制。

规划 (Planning)

规划模块负责根据 Agent 的目标和对环境的理解,制定一系列行动步骤来达成目标。规划通常涉及搜索可能的状态空间,找到一条从当前状态到达目标状态的路径。

规划的复杂性取决于环境的复杂度和目标的性质。简单的规划可能只是查找预设的行动序列,而复杂的规划可能需要复杂的搜索算法和对环境动态的预测。

1.4 Agent的基本工作流程:

一个典型的 AI Agent 的构建过程主要围绕其核心组成部分展开,并遵循一个基本的工作流程。

img

一个 AI Agent 的工作可以概括为一个持续的循环:

  • 感知 (Perceive): Agent 通过其感知器从环境中获取信息。
  • 思考/决策 (Think/Decide): Agent 处理感知到的信息,结合内部状态、记忆、目标和规划(如果适用),做出下一步的行动决策。
  • 行动 (Act): Agent 通过其执行器在环境中执行决策的行动。
  • 循环: 行动改变了环境的状态,Agent 再次感知新的环境状态,循环往复。

这个感知-思考-行动循环是所有 Agent 的基本运行模式,不同类型的 Agent 在“思考/决策”阶段的复杂程度和所依赖的组成部分有所不同。

感知 (Perceive)

这是 Agent 工作流程的起点。Agent 通过其“感知器”(Sensors)从环境中获取信息。这些信息可以是各种形式的数据,取决于 Agent 所处的环境,例如图像、声音、文本、传感器读数、数据库记录等。

感知模块的作用是将原始的环境数据转化为 Agent 内部能够理解和处理的表示形式。

思考/决策 (Think/Decide)

Agent 接收到感知到的信息后,进入思考和决策阶段。这是 Agent 的“大脑”所在。

在这个阶段,Agent 会处理感知到的信息,结合其内部状态(如记忆、信念)、目标以及规划(如果适用),来决定下一步应该采取什么行动。

决策过程的复杂性取决于 Agent 的类型(简单反射、基于模型、基于目标、基于效用、学习型等)以及任务的复杂性。这可能涉及规则匹配、模型预测、搜索规划、推理计算或基于学习模型的输出。

行动 (Act)

一旦决策完成,Agent 就会通过其“执行器”(Actuators)在环境中执行相应的行动。

行动的形式同样取决于 Agent 所处的环境,例如移动机器人、发送指令、修改数据、生成文本、播放声音等。

行动的目的是影响环境的状态,使其朝着 Agent 目标的方向发展。

循环 (Loop)

Agent 执行行动后,环境的状态会发生改变。

Agent 再次通过感知器获取新的环境信息,开始下一个感知-思考-行动循环。

这个循环持续进行,直到 Agent 完成任务、达到目标或被终止。

AI Agent 的基本工作流程是一个持续的循环,描述了 Agent 如何与其环境进行交互并执行任务。构建一个 AI Agent 就是要设计和实现这些组成部分,并确保它们能够有效地协同工作,使 Agent 能够在特定环境中自主地感知、思考和行动,以实现其设计目标。

对于产品经理来说,理解这些组成部分有助于更好地定义 Agent 的功能需求、评估技术可行性以及设计用户与 Agent 的交互方式。

2 核心技术与支撑

理解这些技术不是要深入技术细节,而是要明白它们在 Agent 中扮演的角色、能解决什么问题以及带来哪些可能性和局限性。

2.1 LLM 在AI Agent中的作用

大型语言模型(LLM)的出现极大地增强了 AI Agent 的能力,尤其是在“思考/决策”这个环节。可以将 LLM 理解为 Agent 的一个强大“大脑”,它赋予了 Agent 更高级的理解、推理和行动能力。

LLM 作为 agent 的“大脑”进行思考和决策

  • 理解复杂指令: LLM 能够理解自然语言形式的复杂指令和用户意图,即使这些指令不够精确或包含多步要求。这是传统软件难以做到的。
  • 知识和常识: LLM 在海量数据上进行训练,包含了丰富的世界知识和常识。这使得 Agent 能够理解其所处环境中的概念、实体和关系,进行更符合逻辑的推理。
  • 推理能力: LLM 具备一定的推理能力,可以根据感知到的信息和已有的知识进行逻辑推断,解决问题,甚至进行一定程度的规划。例如,Agent 接收到“帮我预订明天从北京到上海的机票”的请求,LLM 可以理解需要查询航班、比较价格、选择航班等步骤。
  • 生成响应和计划: LLM 可以生成自然语言形式的响应,与用户或其他 Agent 进行交流。更重要的是,它可以生成行动计划,将复杂任务分解为一系列可执行的子任务或步骤。

Prompt Engineering

  • 引导 LLM 行为: LLM 本身是一个非常通用的模型,它如何执行任务很大程度上取决于你给它的输入,也就是 Prompt(提示)。Prompt Engineering 就是设计和优化这些输入,以最大化 LLM 在特定任务上的表现,并使其行为符合 Agent 的设计目标。
  • 控制输出格式和内容: 通过精心设计的 Prompt,可以指导 LLM 生成特定格式的输出(例如,生成 JSON 格式的行动计划),或者控制其输出的内容和风格。
  • 赋予角色和任务: Prompt 可以用来为 LLM 定义 Agent 的角色(例如,“你是一个智能客服 Agent”)和当前需要完成的任务。
  • 提供上下文和约束: 在 Prompt 中提供相关的上下文信息和约束条件,可以帮助 LLM 更准确地理解当前情况并做出合适的决策。
  • 重要性: 对于基于 LLM 的 Agent 来说,Prompt Engineering 是连接 Agent 逻辑和 LLM 能力的桥梁。一个优秀的 Prompt 可以让 Agent 的表现事半功倍,而糟糕的 Prompt 可能导致 Agent 行为异常或效率低下。

Function Calling / Tool Use

LLM 本身主要处理文本信息,无法直接感知真实世界或执行外部操作(如访问互联网、操作文件、调用第三方服务)。Function Calling 或 Tool Use 机制解决了这个问题。

通过 Function Calling,Agent(或更准确地说,LLM 作为 Agent 的一部分)可以根据当前的任务需求,决定调用哪些外部函数或工具,并生成调用这些函数所需的参数。

调用流程:

  • Agent (LLM) 接收到用户请求或感知到环境变化。
  • Agent (LLM) 分析请求,识别需要外部工具协助才能完成。
  • Agent (LLM) 生成调用特定工具(Function)的请求,包括函数名和参数。
  • Agent 框架或外部执行器接收到这个调用请求。
  • 外部执行器实际调用相应的工具或 API,并获取执行结果。
  • 执行结果被反馈给 Agent (LLM) 作为新的感知信息。
  • Agent (LLM) 根据执行结果继续思考、决策或生成最终回复。

Function Calling / Tool Use 是赋予 AI Agent 与真实世界交互能力的关键。它使得 Agent 能够执行远超文本生成范围的任务,例如:

  • 查询实时信息(天气、新闻、股票)。
  • 执行计算。
  • 发送邮件或消息。
  • 操作文件或数据库。
  • 控制外部设备(在物联网场景下)。

结合 LLM 的推理能力和 Tool Use 的执行能力,可以构建出能够理解复杂任务、自主规划步骤并调用外部工具来完成任务的 Agent。

2.2 强化学习 (Reinforcement Learning) 基础

RL 是一种通过“试错”来学习最优决策策略的方法。它特别适用于 Agent 需要在复杂、动态的环境中通过一系列行动来最大化长期奖励的任务。

强化学习是一种机器学习范式,Agent 通过与环境的交互来学习如何采取行动以最大化累积奖励。它不像监督学习那样需要标记好的数据,也不像无监督学习那样寻找隐藏结构,而是在不断尝试和接收反馈(奖励或惩罚)中学习最优策略。

基本概念

理解 RL 需要掌握以下几个核心概念:

  • Agent: 学习者和决策者,即我们正在训练的 AI Agent。
  • 环境 (Environment): Agent 存在并与之交互的外部世界。Agent 的行动会影响环境的状态,环境会向 Agent 提供奖励和新的状态。
  • 状态 (State): 环境在某一时刻的描述。Agent 根据当前状态来决定采取什么行动。状态可以是离散的(如棋盘游戏的局面)或连续的(如机器人的关节角度和速度)。
  • 行动 (Action): Agent 在某一状态下可以采取的离散或连续的动作。Agent 的行动会改变环境的状态。
  • 奖励 (Reward): 环境对 Agent 行动反馈的信号,通常是一个数值。正奖励表示 Agent 的行动是好的,负奖励(惩罚)表示行动是坏的。Agent 的目标是最大化长期累积奖励。
  • 策略 (Policy): Agent 在给定状态下选择行动的规则或函数。策略定义了 Agent 的行为方式。学习最优策略是 RL 的核心任务。
  • 价值函数 (Value Function): 评估某一状态或某一状态下采取某一行动的长期价值。价值函数预测从当前状态或行动开始,按照某个策略执行下去,可以获得的期望累积奖励。

RL 如何用于训练 Agent

强化学习的交互循环想象成一个 Agent(学习者)在玩一个游戏,通过不断尝试和学习来提高自己的游戏水平。这个过程就像下面这样一步一步进行的:

1.Agent 观察环境,获取当前状态 St。

    1. 这就像 Agent 睁开眼睛,看看自己现在在游戏的什么位置,周围是什么情况。
    2. 比如,在一个扫地机器人游戏中,状态可能是“机器人在客厅的角落,电量还有 80%”。

2.Agent 根据其策略 π 在状态 St 下选择一个行动 At。

    1. “策略”就是 Agent 的游戏攻略或者行动指南。根据当前看到的情况(状态),Agent 查阅自己的攻略,决定下一步要做什么。
    2. 比如,扫地机器人看到自己在角落,策略可能是“如果我在角落,就向前移动”。

3.Agent 执行行动 At.

    1. Agent 按照攻略上的指示,实际执行了它选择的行动。扫地机器人真的向前移动了一步。

4.环境根据行动 At 转移到新的状态 St+1,并给 Agent 一个奖励 Rt+1。

    1. Agent 的行动会影响游戏世界(环境)。扫地机器人向前移动后,它的位置改变了(新的状态),同时环境会给它一个反馈——“奖励”。
    2. 如果它扫到了灰尘,可能得到一个正奖励(比如 +1 分);如果撞到了墙,可能得到一个负奖励(比如 -0.5 分)。这个奖励信号告诉 Agent 刚才的行动是好是坏。

5.Agent 接收到新的状态 St+1 和奖励 Rt+1。

    1. Agent 再次睁开眼睛,看到自己现在到了一个新的位置(新的状态),并且收到了环境给它的分数(奖励)。

6.Agent 利用 St,At,Rt+1,St+1 这些信息来更新其策略或价值函数,以改进未来的决策。

    1. 这是学习的关键步骤。Agent 回顾刚才的经历:在哪个状态 (St) 下,采取了什么行动 (At),得到了多少奖励 (Rt+1),然后到达了哪个新的状态 (St+1)。
    2. Agent 会根据这次经验来修改自己的游戏攻略(策略),或者更新自己对不同状态/行动价值的评估(价值函数),以便下次遇到类似情况时能做出更好的选择,争取获得更高的奖励。
    3. 比如,如果向前移动撞墙得到了负奖励,Agent 可能会修改策略,下次在角落时尝试转向。

7.重复步骤 1-6,直到达到终止状态或完成训练。

    1. Agent 不断地在环境中感知、决策、行动、接收反馈、学习,就像玩家不断地玩游戏、总结经验、提高技术一样。通
    2. 过大量的循环,Agent 逐渐学会如何在环境中采取最优的行动序列,以最大化它能获得的累积奖励。

Agent 在环境中采取行动,环境给出奖励和新的状态,Agent 根据奖励信号调整其策略,以学习如何在特定状态下采取能获得最大累积奖励的行动。

这个循环就是强化学习 Agent 在环境中学习和优化的基本过程。Agent 自主探索和通过与环境的交互来获取经验,而不是依赖于预先提供的大量标记数据。

RL的应用

强化学习(RL)在许多领域都有应用,特别是那些需要 Agent 在复杂、动态环境中做出序列决策以最大化长期收益的场景。自动驾驶、游戏 AI 和机器人控制是其中非常典型的例子。

马斯克对自动驾驶的定义:“感知系统决策系统的一致性。”

自动驾驶 (Autonomous Driving)

  • Agent: 自动驾驶汽车本身就是 Agent。

  • 环境 (Environment): 真实的道路环境,包括其他车辆、行人、交通信号、天气条件、路况等。这是一个非常复杂、动态且部分可观察的环境。

  • 状态 (State): Agent 感知到的当前环境信息,例如车辆自身的速度、位置、方向、周围障碍物的位置和速度、交通信号状态、车道线信息等。

  • 行动 (Action): 自动驾驶汽车可以执行的控制指令,例如加速、减速、转向、变道、刹车等。

  • 奖励 (Reward): 设计合适的奖励函数是关键。奖励信号可以鼓励 Agent 安全驾驶(例如,避免碰撞获得高奖励,发生碰撞获得大惩罚)、遵守交通规则(例如,闯红灯获得惩罚)、高效驾驶(例如,按时到达目的地获得奖励,行驶时间过长获得惩罚)等。

  • 应用: RL 可以用来训练自动驾驶汽车在各种复杂的驾驶场景下做出最优决策,例如:

    • 在拥堵交通中进行加减速和变道。
    • 在十字路口根据信号灯和周围车辆行为做出通过决策。
    • 在遇到突发情况(如行人突然出现)时进行紧急避障。
    • 学习在不同天气条件下安全驾驶

游戏 AI (Game AI)

  • Agent: 游戏中的非玩家角色 (NPC) 或玩家控制的角色(在训练时)。

  • 环境 (Environment): 游戏世界,包括地图、其他角色、物品、游戏规则、得分机制等。

  • 状态 (State): Agent 在游戏中的当前情况,例如角色的位置、生命值、拥有的物品、敌人的位置、游戏得分等。

  • 行动 (Action): Agent 在游戏中可以执行的操作,例如移动、攻击、跳跃、使用道具、建造等。

  • 奖励 (Reward): 奖励信号通常与游戏目标挂钩。例如,击败敌人获得正奖励,被击败获得负奖励,完成任务获得高奖励,探索新区域获得小奖励等。

  • 应用: RL 在游戏 AI 中被广泛应用,可以训练 Agent 学习:

    • 玩各种电子游戏,甚至达到超人水平(例如 AlphaGo 在围棋中的应用)。
    • 设计具有复杂和逼真行为的 NPC。
    • 学习最优的游戏策略,例如资源管理、路径寻找、战斗技巧等。

机器人控制 (Robot Control)

  • Agent: 机器人本体。

  • 环境 (Environment): 机器人所处的物理世界,包括地形、障碍物、需要操作的物体等。

  • 状态 (State): 机器人的内部状态(如关节角度、速度、电量)和通过传感器感知到的外部环境信息(如摄像头图像、力传感器读数、距离信息)。

  • 行动 (Action): 机器人可以执行的物理动作,例如移动关节、抓取物体、行走、奔跑等。

  • 奖励 (Reward): 奖励信号用于引导机器人完成特定任务。例如,成功抓取物体获得正奖励,移动到目标位置获得奖励,摔倒获得惩罚,完成复杂操作序列获得高奖励等。

  • 应用: RL 可以用来训练机器人学习:

    • 复杂的运动技能,如行走、奔跑、跳跃。
    • 操作物体,如抓取、放置、组装。
    • 在未知环境中进行导航和探索。
    • 执行需要精细控制的任务。

在这些应用中,RL 的优势在于它能够让 Agent 在没有明确编程所有可能情况的情况下,通过与环境的交互自主地学习如何做出最优决策,以应对复杂和不确定的现实世界。

2.3 知识图谱 (Knowledge Graph) 与Agent

什么是知识图谱

知识图谱是一种结构化的知识表示方式,它以图的形式存储知识。图中的节点代表“实体”(如人、地点、事件、概念等),边代表实体之间的“关系”(如“出生在”、“位于”、“是…的作者”等)。这种结构化的方式使得知识易于被机器理解和处理。

为 Agent 提供结构化的知识和常识

知识图谱就像一个巨大的、机器可读的百科全书。它包含了大量的实体和它们之间的关系,这些信息构成了 Agent 理解世界的基础知识和常识。

与非结构化的文本数据不同,知识图谱提供了明确的语义关系, Agent 可以通过查询和遍历知识图谱来获取关于特定实体或概念的详细信息及其与其他实体的关联。这为 Agent 提供了丰富的、可推理的背景知识。

知识图谱在 Agent 的理解、推理和规划中的作用

**理解 (Understanding):**帮助 Agent 更全面地理解感知到的信息。

当 Agent 感知到环境中的信息(例如,一段文本或一个图像)时,它可以利用知识图谱来增强理解。
例如,如果 Agent 听到“埃菲尔铁塔”,它可以在知识图谱中查找“埃菲尔铁塔”实体,获取其属性(如类型:塔、位置:巴黎、建造者:古斯塔夫·埃菲尔)以及与其他实体(如巴黎、法国)的关系。

**推理 (Reasoning):**对于 Agent 解决问题、回答复杂问题或进行决策至关重要。

知识图谱的结构化特性使得 Agent 能够进行逻辑推理。通过沿着图谱中的边进行遍历和组合信息,Agent 可以推导出新的事实或关系。
例如,如果知识图谱中包含“巴黎 位于 法国”和“埃菲尔铁塔 位于 巴黎”的关系,Agent 可以推理出“埃菲尔铁塔 位于 法国”。

规划 (Planning): 帮助 Agent 理解任务目标所涉及的实体和关系,并基于这些信息制定符合逻辑和实际情况的行动序列。

在需要制定行动计划的任务中,知识图谱可以为 Agent 提供必要的背景信息和约束。
例如,一个旅行规划 Agent 可以利用知识图谱了解不同城市之间的地理位置、交通方式、景点信息等,从而规划出合理的旅行路线。知识图谱可以

总的来说,知识图谱为 AI Agent 提供了一个丰富的、结构化的知识库,极大地提升了 Agent 的认知智能,使其能够更深入地理解环境、进行复杂的推理并制定更有效的行动计划。

2.4 自然语言处理 (NLP) 和计算机视觉 (CV) 基础

自然语言处理(NLP)和计算机视觉(CV)是人工智能领域的重要分支,它们为 AI Agent 提供了强大的感知能力,使其能够理解和处理来自环境中的文本、语音、图像和视频信息。

利用 NLP 理解文本和语音

  • 理解文本: NLP 技术让 Agent 能够阅读和理解书面文字。这包括解析句子的结构(语法分析)、理解词语的含义(语义分析)、识别文本中的实体(命名实体识别)、判断文本的情感倾向(情感分析)以及理解文本的整体意图。例如,一个智能客服 Agent 利用 NLP 理解用户输入的文字问题,一个信息收集 Agent 利用 NLP 从网页上提取关键信息。
  • 理解语音: NLP 结合语音识别技术(Speech Recognition)使得 Agent 能够理解人类的口语。语音识别将语音信号转换为文本,然后 Agent 可以利用 NLP 技术处理这个文本。这对于智能助手、语音控制机器人等 Agent 类型至关重要。

利用 CV 理解图像或视频

  • 理解图像: CV 技术让 Agent 能够“看”并理解图像内容。这包括识别图像中的物体(目标检测)、识别图像中的场景(场景识别)、判断图像中的活动(行为识别)以及理解图像的整体语义。例如,一个自动驾驶 Agent 利用 CV 识别道路上的车辆、行人和交通标志,一个安防监控 Agent 利用 CV 检测异常活动。
  • 理解视频: CV 技术也可以应用于视频流,Agent 可以分析视频中的连续图像序列,理解动态场景和事件。

支持 Agent 的感知能力

“感知”是 Agent 与环境交互的第一步。NLP 和 CV 正是为 Agent 提供了获取和理解环境信息的关键“感官”。

通过 NLP,Agent 可以感知和理解基于语言的环境信息,例如用户的指令、文档内容、对话交流等。

通过 CV,Agent 可以感知和理解基于视觉的环境信息,例如物理世界的场景、物体的状态、其他 Agent 的行为等。

这些感知到的信息被转化为 Agent 内部可以处理的表示形式,然后传递给“思考/决策”模块,供 Agent 进行后续的推理和行动选择。

NLP 和 CV 是 AI Agent 实现有效感知的基石技术,它们使得 Agent 能够从不同模态的数据中获取并理解环境信息,为 Agent 的智能行为提供了必要的基础。

3 典型应用领域

3.1 智能助手 (如Siri, Alexa, 智能客服)

Agent 角色: 在这个领域,AI Agent 扮演着用户的个人助手或企业的服务代表。它们通过自然语言与用户交互,理解用户意图,并执行各种任务。

应用方式:

  • 语音助手 (Siri, Alexa, Google Assistant): Agent 通过语音识别感知用户的语音指令,利用自然语言理解(NLP)解析意图,然后执行相应的行动,如播放音乐、设置闹钟、查询信息、控制智能家居设备等。
  • 智能客服 Agent: Agent 通过文本或语音感知用户的问题,利用 NLP 理解问题内容,查询知识库或调用后端系统获取答案,并以自然语言回复用户。它们可以处理常见的咨询、故障排除,甚至进行简单的业务办理,从而减轻人工客服的压力。

核心能力: 强大的自然语言理解和生成能力、知识库检索、意图识别、对话管理、以及调用外部工具(如日历、音乐应用、智能家居API)的能力。

3.2 自动化流程 (RPA与Agent结合)

Agent 角色: AI Agent 在自动化流程中可以作为更智能、更具适应性的自动化执行者,与传统的机器人流程自动化 (RPA) 结合,提升自动化水平。

应用方式:

  • 智能 RPA: 传统的 RPA 机器人通常遵循预设的规则执行任务。结合 AI Agent 的感知、决策和学习能力,RPA 可以处理更复杂的、非结构化的数据,应对流程中的异常情况,甚至自主优化执行路径。例如,Agent 可以读取和理解非结构化的发票信息,然后驱动 RPA 系统在财务软件中录入数据。
  • 端到端流程自动化: Agent 可以感知整个业务流程的状态,自主决定何时触发哪些自动化任务,甚至与其他 Agent 或人类协作完成复杂流程。

核心能力: 自然语言理解(处理非结构化文本)、计算机视觉(识别界面元素)、决策和规划能力(应对流程变化)、与现有系统的集成能力

3.3 国际贸易领域应用

  • 市场情报 Agent: 感知全球贸易数据、政策变化、市场趋势、竞争对手信息等,分析并生成市场报告,为企业提供决策支持。
  • 贸易合规 Agent: 感知国际贸易法规、关税信息、出口管制清单等,帮助企业检查贸易活动的合规性,识别潜在风险。
  • 供应链优化 Agent: 感知全球供应链各环节的状态(库存、运输、需求等),利用规划和决策能力优化库存管理、物流路线,提高供应链效率和鲁棒性。
  • 合同分析 Agent: 利用 NLP 技术感知和理解国际贸易合同条款,识别关键信息、风险点,并进行合同比对和管理。
  • 智能谈判 Agent: 在某些场景下,Agent 可以代表一方进行简单的商务谈判,感知对方的提议,评估价值,并根据预设策略进行回应。

4 当前挑战与未来趋势

4.1 AI Agent 面临的挑战

AI Agent 尽管潜力巨大,但在实际落地和广泛应用中仍然面临很多挑战:

数据需求、计算资源

  • 挑战: 高性能的 AI Agent,特别是基于大型语言模型或需要强化学习训练的 Agent,通常需要海量的训练数据和巨大的计算资源(高性能计算集群、GPU等)。数据的获取、清洗、标注成本高昂,计算资源的投入也是巨大的门槛。
  • 影响: 这限制了小型团队或个人开发复杂 Agent 的能力,也使得 Agent 的训练和运行成本居高不下,影响产品的商业可行性。

鲁棒性与可靠性

  • 挑战: Agent 在面对未知、异常或超出训练范围的情况时,其表现可能不稳定,容易出错甚至崩溃。环境的动态性和不确定性增加了 Agent 保持鲁棒性的难度。例如,自动驾驶 Agent 在极端天气或不寻常路况下可能表现不佳。
  • 影响: 鲁棒性不足会降低用户对 Agent 的信任度,尤其是在高风险的应用场景(如医疗、金融、自动驾驶)中,可靠性是生死攸关的问题。

可解释性与透明度

  • 挑战: 许多高级 Agent,特别是基于深度学习模型的 Agent,其决策过程是一个“黑箱”,很难理解 Agent 为什么会做出某个特定的决策。这被称为“可解释性”问题。
  • 影响: 在需要解释决策原因的场景(如贷款审批、医疗诊断)中,缺乏可解释性是一个严重的问题。用户和监管机构可能难以信任和接受 Agent 的决策。透明度不足也使得 Agent 的调试和问题排查变得困难。

安全性与隐私保护

  • 挑战: Agent 在感知环境和执行行动时可能涉及敏感数据(用户隐私、商业机密)。如何确保数据在收集、存储、处理和使用过程中的安全性,防止数据泄露或滥用是一个重大挑战。此外,恶意用户可能试图攻击 Agent 系统,诱导 Agent 执行有害操作。
  • 影响: 数据泄露和安全漏洞会严重损害用户信任和企业声誉,可能导致法律责任。设计安全的 Agent 系统需要严格的数据管理和安全防护措施。

成本与效率

  • 挑战: 构建、训练和部署高性能的 AI Agent 通常需要高昂的成本,包括技术研发投入、数据成本、计算资源成本、以及持续的维护和更新成本。同时,Agent 在执行某些任务时可能效率不高,例如自主规划过程可能耗时较长。
  • 影响: 高成本限制了 Agent 在一些对成本敏感的场景中的应用。效率问题可能影响用户体验和业务流程的顺畅性。如何在 Agent 的智能水平、性能和成本之间找到平衡是一个重要的产品决策。

理解这些挑战并非意味着 Agent 不可行,而是提醒我们在设计和开发过程中需要认真考虑这些问题,并寻找相应的解决方案或缓解策略。

4.2 未来趋势

AI Agent 技术正处于快速发展阶段,未来将呈现出以下几个重要的发展趋势

多 Agent 系统的协作与涌现能力:

未来的 Agent 不会是孤立的个体,而是会形成相互协作的多 Agent 系统 (Multi-Agent Systems - MAS)。不同的 Agent 拥有不同的能力和信息,它们通过通信、协调和合作来共同完成单个 Agent 无法完成的复杂任务。

在 MAS 中,通过 Agent 之间的简单交互,可能会涌现出系统整体层面更高级、更智能的行为,这种涌现能力是 MAS 的一个重要特征。例如,在模拟城市交通中,单个自动驾驶 Agent 遵循简单的规则,但多个 Agent 协作可能优化整体交通流量。

这将使得 Agent 能够解决更宏大、更复杂的现实世界问题,例如智能电网管理、协同机器人操作、复杂供应链优化等。

Agent 与人类的混合智能

未来的 Agent 更可能作为人类的助手或增强工具,与人类形成紧密的协作关系,而非完全取代人类。

在这种模式下,人类和 Agent 各自发挥优势,人类负责高层次的决策、创造性和伦理判断,Agent 负责执行重复性任务、处理大量数据、提供信息支持和自动化操作。

这将改变未来的工作模式和人机交互方式,Agent 将成为人类能力的延伸,共同解决问题。例如,医生与医疗诊断 Agent 协作、设计师与创意生成 Agent 协同工作。

更强的通用性和适应性

随着基础 AI 技术(特别是 LLM)的进步,未来的 Agent 将具备更强的通用性,能够处理更广泛的任务和适应更多样的环境,而不仅仅局限于特定领域。

Agent 将能够更快地适应新的环境、学习新的任务,甚至在没有明确指导的情况下进行自主探索和学习。

这将极大地扩展 Agent 的应用范围,使其能够更灵活地部署到各种场景中,降低定制化开发的成本。

Agent 在元宇宙、Web3 等新领域的应用:

随着元宇宙(Metaverse)和 Web3 等新兴领域的发展,AI Agent 将在其中扮演重要角色。

元宇宙应用: Agent 可以作为元宇宙中的虚拟角色(NPC)、智能向导、内容创建者、服务提供者等,增强元宇宙的互动性和智能化水平。

Web3 应用: Agent 可以参与到去中心化应用(DApps)中,执行智能合约、管理数字资产、参与链上治理等,为 Web3 生态提供自动化和智能化的能力。

  • 参与去中心化应用 (DApps):

    • DApps 是运行在区块链上的应用程序。AI Agent 可以作为用户或协议的代表,直接与 DApps 进行交互。
    • Agent 可以理解 DApp 的功能和规则,自主地在 DApp 中执行任务,例如在去中心化交易所进行交易、参与借贷协议、或在链上游戏中执行操作。
  • 执行智能合约 (Smart Contracts):

    • 智能合约是存储在区块链上、当满足预设条件时自动执行的代码。
    • AI Agent 可以监控环境或接收信息,当特定条件满足时,自主地触发智能合约的执行。例如,一个 Agent 可以监控某个加密货币的价格,当价格达到阈值时,自动执行一个预设的交易智能合约。
  • 管理数字资产:

    • Agent 可以代表用户或协议管理其数字资产,包括加密货币、NFT 等。
    • 这可以包括自动化交易策略(基于市场数据和预设规则)、管理 NFT 投资组合、或在不同区块链网络之间转移资产。Agent 可以帮助用户更高效地管理其在 Web3 中的数字财富。
  • 参与链上治理 (On-chain Governance):

    • 许多去中心化项目(如 DAO)通过链上投票机制进行治理决策。
    • AI Agent 可以代表其所有者(例如,持有治理代币的用户)参与链上投票。Agent 可以分析提案内容、社区讨论和链上数据,然后根据所有者的偏好或预设的策略进行投票。这可以提高链上治理的参与度和效率。
  • 为 Web3 生态提供自动化和智能化的能力:

    • Web3 领域目前很多操作还需要手动完成,效率不高。AI Agent 可以自动化许多重复性或复杂的任务。
    • Agent 可以监控链上数据、分析市场趋势、识别套利机会、管理流动性等,为 Web3 生态提供更高级的自动化和智能化服务。

AI Agent 在 Web3 中的应用潜力在于其自主性、感知能力和执行能力,能够弥合现实世界信息与链上操作之间的鸿沟,为用户和协议提供更高效、智能和自动化的交互方式。

5 构建 agent 关注重点

理解了 AI Agent 的基础概念、核心技术、应用场景和面临的挑战后,更重要的是将这些知识转化为产品实践。在 AI Agent 产品规划和落地过程中需要重点关注的几个方面:

用户价值

需要深入理解目标用户的痛点和未被满足的需求。探寻Agent 如何真正解决用户问题,提供独特价值?

  • Agent 的自主性、反应性、前瞻性或社交性等属性,能够以何种独特的方式帮助用户解决问题?
  • 它提供的价值是效率提升、成本降低、体验优化、还是创造全新的能力?

确保 Agent 不是为了技术而技术,而是真正为用户创造价值。

用户体验

AI Agent 的自主性和不确定性给用户体验带来了新的挑战,要探索Agent 的交互方式、反馈机制、错误处理。

  • 如何设计自然、直观的交互方式(如对话、图形界面、语音)?
  • Agent 如何清晰地向用户表达其当前状态、正在执行的任务以及思考过程(在需要透明度的场景下)?
  • 当 Agent 遇到困难、无法理解用户意图或执行失败时,如何提供有效的错误提示、解释原因并引导用户?
  • 如何平衡 Agent 的自主性与用户的控制权,让用户在需要时能够干预或纠正 Agent 的行为?

产品边界

要清晰地定义 Agent 的能力边界至关重要,避免过度承诺和用户失望。了解Agent 的能力范围,哪些任务适合 Agent,哪些不适合。

  • 基于当前的技术成熟度和项目资源,Agent 能够可靠地完成哪些任务?
  • 哪些任务对于 Agent 来说过于复杂、不确定或风险太高?
  • 明确告知用户 Agent 的能力范围和限制。在 Agent 无法处理任务时,如何设计优雅的降级方案(例如,转接人工服务)?

数据与反馈

AI Agent 的性能很大程度上依赖于数据和持续优化。要了解如何收集用户反馈和 Agent 运行数据,用于产品迭代和 Agent 优化。

  • 如何收集用户与 Agent 交互的数据(如对话记录、操作日志、用户评分)?
  • 如何从这些数据中分析 Agent 的表现、识别问题和改进点?
  • 如何建立有效的用户反馈机制,让用户能够方便地报告问题或提供改进建议?
  • 如何利用收集到的数据和反馈来迭代优化 Agent 的模型、规则或策略?

商业模式

探寻 Agent 的智能和自动化能力如何转化为商业价值,如何融入现有商业模式或创造新的商业机会。

  • Agent 是作为现有产品的增值功能?还是独立的产品或服务?
  • 如何通过 Agent 提升现有业务的效率、降低成本、增加收入或创造新的盈利点?
  • 如何为 Agent 的服务定价(例如,基于功能、使用量、效果或订阅制)?
  • Agent 的成本结构是怎样的,如何确保商业上的可持续性?

风险管理

要识别和管理 Agent 可能带来的技术、伦理和安全风险。

  • Agent 可能带来哪些技术风险(如鲁棒性不足、性能不稳定)?
  • 如何制定相应的技术方案和测试策略来降低这些风险?
  • Agent 在决策和行动中是否存在潜在的偏见或不公平性?
  • 如何设计和评估 Agent 的行为以确保公平性?
  • 如何保护用户数据的安全和隐私?
  • 如何应对 Agent 被滥用或攻击的风险?
  • 如何在产品设计和运营中考虑伦理和社会影响?

需要综合考虑这些方面,将技术能力、用户需求、商业目标和风险控制相结合,才能成功地规划、开发和落地有价值的 AI Agent 产品。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值