这两天,有同学问我如何打造一个实用的智能体,例如利用DeepSeek的推理能力结合外部插件,实现实时联网和网页读取分析等功能。刚好我最近一直在学习AI Agent和MCP相关的知识,接下来我会分享一个几乎不需要代码编程的方案,感兴趣的朋友可以关注一下。
1. 如何创建智能体
接下来我会逐步演示创建智能体步骤,并解释基本的技术原理,大家只需要按照我的步骤就能搭建好。
第一步,进入coze.cn,右上角登录,可使用验证码登录
第二步,登录后,点击首页左侧一列上方有个+,如下图所示:
弹出下面对话框,点击「创建智能体」
第三步,然后弹出下面对话框,填入智能体名称,功能介绍(名称和功能用于让智能体使用者快速知道智能体的用途),然后点击「确认」按钮:
第四步,进入智能体的搭建页面后,先选择大模型,这里选择的是DeepSeek-R1工具调用模型,这是R1 functionCall版本。如下图所示:
第五步,为智能体添加技能包,这是让DeepSeek-R1具备读取任意网页能力的最重要一步,咱们主要用到「插件」功能,点击插件后,出现下面界面,点击「+」,添加插件:
找到“链接读取”插件,点击「添加」按钮即可:
经过以上简单五步,此时DeepSeek-R1就具备了读取外部网页能力,创建智能体页面右侧就显示了SmartWebReader的界面,在这里支持调试和预览:
可以发送几个网页让智能体分析,经过几次调试确认没问题后,我们就可以点击右上角「发布」按钮。在个人工作空间中,我们可以看到已经创建的智能体,需要使用时,点击进入即可。
2. 智能体工作原理
下面分析下以上过程的基本原理,如下流程图所示,用户输入问题提问DeepSeek-R1,DeepSeek-R1开始推理,推理时发现需要借助外部插件,调用插件返回响应结果给DeepSeek-R1,DeepSeek-R1结合外部相应进行推理,并最终将结果返回给用户。
除此以外,我们还可以给智能体安装更多插件,让它具备更多强大的功能,比如安装文生图的插件等,然后它就具备DeepSeek-R1推理文字生图片的能力。更多插件功能,大家可以自己去试一试。
3. 总结
本文详细阐述了如何将DeepSeek-R1集成到智能体中,还介绍了创建AI智能体的步骤。通过SmartWebReader智能体,我们可以解决DeepSeek-R1在网页读取分析方面的限制。总体而言,这种方法构建过程简单直观,无需编写代码即可开发出专属的智能体,且实现的功能非常实用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。