0基础学AI智能体,Coze和Dify该学那个?有什么区别吗?

Coze

Image

平台的定位与目标

Coze 是字节跳动推出的一站式 AI 应用开发平台,定位为“ AI 2.0时代的智能体开发平台”,目标是让开发者、企业和普通用户都可以通过可视化操作创建个性化 AI 应用。

平台支持将开发的智能体部署到微信、飞书、Discord 等主流社交平台,或者通过 API 集成到现有业务系统。

借助扣子提供的可视化设计与编排工具,你可以通过零代码或低代码的方式,快速搭建出基于大模型的各类 AI 项目,满足个性化需求、实现商业价值。

平台的核心优势

拖拽式工作流:提供可视化的拖拽界面和丰富的模板,无需编程就可以搭建AI应用(如智能客服),特别适合非技术用户快速上手。

多平台部署:一键发布至微信、飞书、抖音等平台,直接触达C端用户。

多模态交互:集成文本生成、图像理解、语音合成功能,可一键生成小红书文案(往期文章有)或分析表格数据。

持久化的记忆能力:可持久记住用户对话的重要参数或内容,实现越用越懂你的智能推荐。

垂直领域定制化能力:提供电商推荐系统、医疗数据分析等解决方案,与字节系产品(抖音、飞书)集成。

Image

平台存在的劣势

输出效果不稳定:复杂任务(比如代码生成)容易受底层模型能力的限制,需频繁调试 Prompt 。

并发能力不足:比如批处理的内部节点过多的话,就会导致报错无法运行,部分插件仅支持单线程。

公开知识库风险:用户上传的知识库默认可能被搜索引擎抓取,存在信息泄露风险。

生态封闭:与字节系生态绑定,深度依赖抖音、飞书等平台,跨生态扩展能力弱于开源竞品(如Dify)

日志体系不完善:API 调用日志查询困难,故障排查效率低。

Image

计费模式

Coze 推出个人免费版,个人进阶版,团队版以及企业版订阅套餐,每个订阅套餐的权益范围不同,采用包年包月+按量付费的混合计费模式。

Image

推广与变现

将智能体上架到商店

扣子支持你将创建的智能体发布到商店以获得更多的曝光,让扣子社区的其他用户发现、使用你的智能体,进而从中收取费用。

不过扣子官方对上架到商城的智能体有一套推荐标准,比如基础要求:智能体头像,介绍,开场白,推荐对话。再比如品质要求:如果使用了工作流,插件,知识库等能力,运行的正常情况下会获得优先推荐。

Dify

Image

Dify是一个开源的生成式AI应用开发平台,融合了后端即服务与LLMOps(大语言模型运维)理念,旨在降低 AI 应用开发门槛,支持从原型设计到生产部署的全生命周期管理。

平台的主要优势

多模型模特支持:兼容GPT-4、Claude3、Llama3、DeepSeek等数百种专有和开源模型,支持动态切换和混合调用策略

灵活调用:内置模型性能对比工具,优化推理效果,满足不同场景对模型精度和成本的需求。

RAG与知识管理能力突出:支持PDF、PPT等文档解析,采用混合检索(语义+关键词)和动态阈值优化,提升知识库问答的准确性,提供经济型(低成本)和高质量型(高精度)知识库分类,适配不同业务需求。

企业级 LLMOps 与生产级能力:提供全流程管理功能,包括实时监控、日志分析、权限管理及数据版本控制,支持高并发场景下的稳定部署。支持私有化部署,保障金融、医疗等高合规性行业的数据安全。

Image

平台存在的劣势

模型依赖性强:平台效果高度依赖所选大语言模型的质量,如果模型本身存在任务短板,Dify难以完全弥补。

复杂任务处理能力受限:对高度专业化任务(如法律合同深度解析)需结合微调模型或外部工具,无法仅通过提示工程解决。

API调用成本较高,依赖OpenAI等第三方付费接口,高频调用或大规模部署时成本可能显著增加。

学习门槛较高:需理解“向量数据库”“模型调优”等技术概念,对非开发者用户不够友好。

Image

计费模式

Dify 有免费版,专业版,团队版,整体价格对普通玩家来说昂贵。

Image

CozeDify
源码闭源开源
用户友好度
技术要求
资源导出不支持支持导出

总结

Coze 适合企业轻量化 AI 部署和开发者快速验证创意,尤其在中文场景和字节生态中有很大的优势。

但对高定制化需求或者说复杂任务自动化场景,需结合 Dify 等开源平台或者自研模块进行互补。

如果你对智能体的要求不高,然后你又没有技术方面的基础,那么我建议你选择 Coze 。

如果你是一位智能体的爱好者,然后你又有一定的技术基础,那么我建议你选择 Dify。

如果你第一次听说什么是智能体,我建议你选 Coze 。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值