和其他编程语言相比,Python要容易上手很多,所以不少同学都选择Python作为自己的入门编程语言。入门Python并不需要从C语言开始学习,因为Python是一门解释性语言,而且又需要面向对象的编程思想,所以更像是一种可以直接用来帮助我们解决问题的工具,现在越来越多的人认识到Python在数据分析方面的优势以及做互联网项目开发的潜力,于是纷纷投入到Python的学习当中。
那么如何将Python语言hold住?尤其是在自学的过程中,少走弯路可以帮助我们节约大量的时间,事半功倍。那么下面就给大家总结几个学习Python的关键点:
关键点1:充分利用好Python的文档资源
Python社区的一大闪光点是它自身有很多优秀的并且是免费的文档,值得我们将其充分利用起来,从Python的安装,环境配置开始,你可以花较少的时间快速过一遍Python教程。建议大家直接从Python3开始学习。推荐读下“Python之禅”,它可以帮助你建立写Python代码需要具备的思维模式。那么此刻要恭喜你现在已有足够的Python知识写第一个应用程序了。
关键点2:从你的第一个Python程序开始
想用Python写出一个应用程序吗?如果Python不是你的第一门语言,那么我确信你用其他语言写的程序可以植入到Python中。 如果不管怎样你确实想写一个全新的应用,那就去做吧。第一个应用当然不是”hello world”,而且具备一定完整性和功能性的应用。举例:
Python应用项目:Whitespace解析器,最初我用Racket实现的,然后是Ruby,后来是Haskell,现在是Python。我不得不再强调一下,现在的重点是学会用这门语言思考,所以尽量保持程序简单这样注意力放在语言的使用上。显然,我并不知道用Python实现这个项目所需要做的每一件事情该怎么做。但这就是这次实践的主题,当你只学你实现特性需要的知识时,应用程序会引导你下一步该学什么。比如,当我实现一个虚拟机时,我知道我需要一个全面的测试套件,但是教程里面却没有相关的介绍。尽管如此,通过快速搜索,我找到了一个关于Python 单元测试框架的优秀文档。我看了下我写测试用例需要用到的部分,然后就开始做了。遇到任何问题再回来看文档。
在阅读文档的同时,你也要学会不断反思代码,聪明点,照着做。我倾向于渐进式开发,所以如果你看这个项目的提交记录,你会看到我怎么建立这个项目,分解问题并最终完成了它的第一个版本。记住,要有始有终。
关键点3:灵活巧用Python第三方库
无论是用Python做开发还是自动化运维,第三方库永远是必不可少的工具,个人比较喜欢的几个第三方库给大家一一举例,当然有更多的内容不能一一列出,只是给大家提供一个思路:
Pygame——一个高可移植性的游戏开发模块
这个游戏开发模块让Python变得更有趣!Pygame 提供了一个方便的选项来处理许多面向 GUI 的行为:绘制画布和 sprite 图形、处理多声道声音、处理窗口和点击事件、碰撞检测等等。可以说Pygame实现了游戏开发的DIY,但不是每个应用,准确的说不是每个 GUI 应用,在使用 Pygame 构建时都能受益,只有细致了解它提供了什么,你才能从中得到惊喜。
NumPy——学霸最爱的科学计算和数学工作基础包,包括统计学、线性代数、矩阵数学、金融操作等等
这是Python功能强大的体现,Quant和bean计数器已经了解 NumPy 并且喜欢它,但 NumPy 的数学 ‘n’ 统计的应用范围比你想象的更广。例如,它是向多维数组添加对 Python 支持的最简单、最灵活的方法之一。NumPy 提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库,专为进行严格的数字处理而产生,和稀疏矩阵运算包 Scipy 配合使用更加方便。
Scrapy——快速、高级的屏幕抓取及 web 爬虫框架
Scrapy 保持整个爬取过程简单。创建一个类,并定义你要删除的项目的类型,并编写一些关于如何从页面中提取数据的规则。结果将以 JSON、XML、CSV 或许多其他的格式导出。收集的数据可以保存为raw,也可以在导入时进行清理。此外,Scrapy可以扩展允许许多其他行为,例如网站登录处理、会话 cookie 处理。图像也可以被 Scrapy自动提取并与被抓取的内容相关联。
关键点4:由点到面,开拓视野
掌握Python需要系统学习,但不等于学习没有重点,那么你需要从你所关注的侧重点和分支去打开你需要get到的知识链条,所以书籍和实战教程必不可少。
推荐书籍:流畅的Python
这是市面上适合初学者入门与进阶的Python教科书之一,内容有一定深度,如果是纯小白,还是建议先阅读文档。
这本书帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,避免重复劳动,同时写出简洁、流畅、易读、易维护,并且具有地道Python风格的代码。本书尤其深入探讨了Python语言的高级用法,涵盖数据结构、Python风格的对象、并行与并发,以及元编程等不同的方面。
特点如下:
● Python数据模型:理解为什么特殊方法是对象行为一致的关键。
● 数据结构:充分利用内置类型,理解Unicode文本和字节二象性。
● 把函数视作对象:把Python函数视作一等对象,并了解这一点对流行的设计模式的影响。
● 面向对象习惯用法:通过构建类学习引用、可变性、接口、运算符重载和多重继承。
● 控制流程:学习使用上下文管理器、生成器、协程,以及通过concurrent.futures和asyncio包实现的并发。
● 元编程:理解特性、描述符、类装饰器和元类的工作原理。
以下是书评:
当然如何将Python学得更有深度和广度,更具前瞻性,那就应该将Python与大数据、人工智能相关技术结合起来,对于自学的同学来讲,可以将《Python+数据分析+机器学习》全套的教程作为学习路径。学习新的技术,不仅可以吸收前人总结的经验,同时还可以让自己掌握的技术更具竞争力:
关于Python技术储备
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、精品Python学习书籍
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、Python练习题
检查学习结果。
七、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。