得人才者得模型,得大模型者得天下。
无论是国外还是国内,大模型如雨后春笋,各大互联网大厂,都在为新技术摇旗呐喊。这不,字节跳动低调一年后,在前段时间也官宣了旗下的AI大模型——豆包全家桶。
△ 字节跳动大模型豆包全家桶
据了解,经过一年时间的迭代和市场验证,豆包大模型正成为国内使用量最大、应用场景最丰富的大模型之一,目前日均处理 1200 亿Tokens文本,生成 3000 万张图片。因为功能强大,字节豆包也被大家称为“王炸”大模型。
至此,字节跳动正式加入到国内大模型混战中,也拉开了大厂大模型价格战。
在发布会上,字节方面宣布豆包通用模型pro-32k版模型推理输入价格仅为0.0008元/千Tokens,价格比行业低99.3%。
紧跟着,阿里云也宣布,通义千问GPT-4级主力模型Qwen-Long,API(应用程序编程接口)输入价格从0.02元/千tokens降至0.0005元/千tokens,降价幅度高达97%。
百度智能云直接在官方账号宣布,文心大模型两大主力模型ENIRESpeed、ENIRELite**将全面免费全面免费,**上下文长度为8K、128K。
可以说,大厂们让大模型价格“卷”起来了,这也预示着大模型的商业化更进一步。
大厂们都清楚,**未来,得大模型者得天下!大厂更清楚的是,得人才者得模型。**为率先抢占大模型市场,各大企业纷纷用高薪抢夺人才,有公司为了招揽人才,直接年薪百万起上不封顶。
现在,AI人才俨然成为互联网行业的“新贵”,甚至在相亲婚恋市场,懂AI大模型的程序员也成为了炙手可热受捧对象。
未来,是属于AI的时代,任何行业都需要AI,AI+任何行业=王炸。可以说,懂AI就等于率先抓住了未来!
会AI的程序员,在企业招聘中更受青睐,将会形成赢者通吃的局面。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。