Nature近期的研究汇总多个病理切片数据集,综合运用多模态技术及自监督学习提出一种病理基础大模型。本文对其使用的方法进行介绍,并对其中使用的公开数据集进行汇总,希望能对各位读者有所帮助。
引言
病理图像评估是癌症及其亚型分类诊断的核心,通过分析组织切片中的细胞形态和分布,能够帮助医生识别肿瘤的类型和分期,从而制定相应的治疗方案。近年来研究者基于深度学习技术完成了肿瘤区域识别及癌症亚型分类等多种任务,提升了诊断的准确性和效率。然而,由于获取覆盖不同组织微环境异质性的综合病理表征非常困难,现有的研究主要集中于解决特定类型肿瘤的诊断任务。这不仅严重依赖于大量高质量标注数据,而且泛化性能往往较差。
自监督学习是一种利用未标注数据自动生成标签的学习方式。由于多样化的未标记训练数据相对容易收集,并且模型训练过程与特定任务无关,自监督学习在不同数据分布和病理图像评估任务上获得了较佳的效果。Nature的这篇研究面向病理图像评估问题,综合运用自监督学习和注意力机制等多种人工智能技术,开发了一个能够适应多种组织类型和评估任务的病理基础大模型。
数据及方法
该研究使用的数据来自于16个公开病理数据集以及6个医疗机构的非公开数据,涵盖了大脑、乳腺、膀胱以及肾脏等19个解剖部位。16个公开病理数据集的链接请看文末。
该研究提出的病理基础大模型主要包含面向无标记patch图像的无监督图像编码器模块、面向全切片图像的弱监督特征聚合模块以及补充解剖部位信息的文本编码器模块。
无监督图像编码器模块旨在为不同来源、参数设置、解剖位置的异质病理数据建立通用特征提取器。CTransPath是一种基于Transformer的无监督对比学习方法,旨在提高组织病理图像分类的性能。它通过引入对比学习框架,利用Transformer架构的特征提取能力,从未标注的图像中学习有意义的特征表示。无监督图像编码器模块基于CTransPath在1500万张未标记切片图像进行训练,建立了一个用于图像编码的组织病理图像分支。
弱监督特征聚合模块通过切片级的标签,采用弱监督学习和注意力机制完成病理图像全局特征的理解。基于无监督图像编码器模块提取的组织病理图像特征表示,辅以实例级特征识别和切片级对比学习,弱监督特征聚合模块通过基于注意力机制的特征融合来聚合这些特征,使病理基础大模型能够从全局特征构建对病理图像的整体理解。
补充解剖部位信息的文本编码器模块采用CLIP模型构建。该模型通过在多样化的图像-文本数据集上进行预训练,使其能够将视觉特征与对应的文本描述关联起来,从而识别不同器官之间的语义相关性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。