本文带你了解如何使用Hugging Face Transformers微调BERT,进行情感分析。
简单明了,无废话,只讲你需要知道的。
引 言
情感分析是指使用自然语言处理技术来判断文本中表达的情感。
这项技术在现代应用中非常重要,如客户反馈评估、跟踪社交媒体情感和市场研究。情感分析有助于企业和组织评估客户意见,为客户提供更好的服务,并改进产品或服务。
BERT,即基于Transformers的双向编码器表示技术(Bidirectional Encoder Representations from Transformers),是一种语言处理模型。BERT在发布时,通过对上下文中单词的深刻理解,大大提高了自然语言处理技术的水平。
BERT的双向性,即同时考虑单词左右两边的上下文,在情感分析等应用中尤其有价值。
本文你将学习如何使用Hugging Face Transformers库微调BERT,用于自己的情感分析项目。无论你是新手还是已有NLP经验,我们都会在这个逐步教程中介绍很多实用的策略和注意事项,确保你能够正确微调BERT以满足自己的需求。
环境设置
在微调模型之前,需要完成一些基本的准备工作。
具体来说,至少需要安装Hugging Face Transformers库、PyTorch和Hugging Face的datasets库。可以通过以下命令安装:
pip install transformers torch datasets
完成后即可开始。
数据预处理
需要选择一些数据来训练文本分类器。这里我们将使用IMDb电影评论数据集,这是展示情感分析的一个常用示例。使用datasets
库加载数据集:
from datasets import load_dataset
dataset = load_dataset("imdb")
print(dataset)
我们需要对数据进行标记化,以便自然语言处理算法使用。
BERT有一个特殊的标记化步骤,确保句子片段在转换后仍保持对人类的可理解性。以下是如何使用Transformers中的BertTokenizer
进行标记化:
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def tokenize_function(examples):
return tokenizer(examples['text'], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
数据集准备
将数据集分为训练集和验证集,以便评估模型性能。具体操作如下:
from datasets import train_test_split
train_testvalid = tokenized_datasets['train'].train_test_split(test_size=0.2)
train_dataset = train_testvalid['train']
valid_dataset = train_testvalid['test']
DataLoader帮助在训练过程中高效管理数据批次。以下是如何为训练和验证数据集创建DataLoader:
from torch.utils.data import DataLoader
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=8)
valid_dataloader = DataLoader(valid_dataset, batch_size=8)
设置BERT模型进行微调
我们将使用BertForSequenceClassification
类加载模型,该类已预训练用于序列分类任务。具体操作如下:
from transformers import BertForSequenceClassification, AdamW
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
训练模型
训练模型包括定义训练循环、指定损失函数、优化器和其他训练参数。以下是设置和运行训练循环的方法:
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir='./results',
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=3,
weight_decay=0.01,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
)
trainer.train()
评估模型
评估模型包括使用准确率、精确度、召回率和F1得分等指标检查其性能。以下是评估模型的方法:
metrics = trainer.evaluate()
print(metrics)
进行预测
微调后,我们可以使用模型对新数据进行预测。以下是在验证集上进行推理的方法:
predictions = trainer.predict(valid_dataset)
print(predictions)
总 结
本教程涵盖了使用Hugging Face Transformers微调BERT进行情感分析的全过程,包括环境设置、数据集准备和标记化、DataLoader创建、模型加载和训练、以及模型评估和实时预测。
微调BERT进行情感分析在很多实际场景中都有价值,如分析客户反馈、跟踪社交媒体情感等。通过使用不同的数据集和模型,你可以扩展这些方法,应用到自己的自然语言处理项目中。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。