LoRA的工作原理

背景

在自然语言处理领域,预训练-微调(pretrain-finetune)范式非常流行。

通过指令微调,大语言模型能够更好地学习遵循和执行人类指令。但是,由于大语言模型的参数量巨大, 进行全参数微调。

预训练模型通常需要大量的计算资源和时间,而在具体任务上微调模型时,仍然需要调整大量的参数,这使得微调过程非常耗费资源。

LoRA的目标就是通过低秩适应来减少微调过程中的参数量,从而降低计算资源的需求。

什么是LoRA?

LoRA,全称Low-Rank Adaptation,是一种高效的模型适应技术,主要用于对大型预训练模型进行微调。

https://arxiv.org/abs/2106.09685

核心思想

LoRA的核心思想是利用低秩矩阵分解技术,将大型预训练模型的参数矩阵分解为两个低秩矩阵的乘积,从而在微调时只需要调整这两个低秩矩阵。

LoRA微调示意图

重新参数化,只训练A和B

具体来说,LoRA假设原始模型的权重矩阵可以表示为两个低秩矩阵的乘积,即:

W=W0+ΔW

其中, W0 预训练模型的原始权重矩阵, ΔW 是通过低秩分解得到的两个矩阵的乘积。

低秩矩阵分解

在LoRA技术中,秩表示用于分解大矩阵的两个低秩矩阵的维度。

具体来说,假设我们有一个权重矩阵 W ,通过低秩分解,我们将其表示为两个矩阵 A 和 B 的乘积,即:

ΔW=A×B

其中, A 的维度是(m,r),B 的维度是(r,n),这里 r 就是秩(Rank)。

选择较小的 r 可以显著减少参数量,从而降低计算和存储成本。

其中, A 和 B 的秩要比 W0 小得多,这样可以显著减少需要调整的参数数量。具体步骤如下:

  1. 预训练模型权重初始化:使用预训练模型的权重矩阵 W0 初始化。

  2. 低秩矩阵初始化:初始化低秩矩阵 A 和 B 。

  3. 微调过程:在微调过程中,只调整低秩矩阵 A 和 B 的参数,而不改变预训练模型的原始权重矩阵 W0 。

优势

  • 降低计算资源需求:通过调整低秩矩阵来适应模型,只需微调较少的参数,大大降低了计算成本和内存需求。

  • 提高适应效率:低秩矩阵分解可以在不显著影响模型性能的情况下,提高微调的效率和速度。

  • 适应不同任务:LoRA可以轻松适应不同的下游任务,只需调整少量的参数即可实现高效的迁移学习。

示例代码

以下是一个简单的示例代码,展示了如何使用LoRA技术对一个预训练的Transformer模型进行微调:

import torch   import torch.nn as nn   from transformers import GPT2Model, GPT2Tokenizer      class LoRAAdapter(nn.Module):       def __init__(self, original_weight, rank=4):           super(LoRAAdapter, self).__init__()           self.rank = rank           self.A = nn.Parameter(torch.randn(original_weight.size(0), rank))           self.B = nn.Parameter(torch.randn(rank, original_weight.size(1)))          def forward(self, W0):           return W0 + torch.matmul(self.A, self.B)      # 加载预训练模型   model_name_or_path = "./Model"   tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path)   model = GPT2Model.from_pretrained(model_name_or_path)         # 在 PyTorch 中使用这个模型获取给定文本的特征的方法如下:   text = "替换为您想要的任何文本。"   encoded_input = tokenizer(text, return_tensors='pt')   output = model(**encoded_input)   # print(output)      # 获取模型的权重参数   for name, param in model.named_parameters():       print(f"参数名称: {name}, 形状: {param.shape}")      # 获取原始模型的权重矩阵   original_weight = None   for name, param in model.named_parameters():       if 'attn.c_attn.weight' in name:           original_weight = param           break      if original_weight is None:       raise ValueError("在模型中找不到注意力权重。")      # 初始化LoRA适配器   lora_adapter = LoRAAdapter(original_weight)      # 定义优化器,只优化LoRA的参数   optimizer = torch.optim.Adam(lora_adapter.parameters(), lr=1e-4)      tokenizer.pad_token = tokenizer.eos_token      # 数据加载器 (假设已经有一个数据集)   def get_dataloader():       # 这里使用一个简单的示例数据集       texts = ["你好,你好吗?", "我很好,谢谢!", "你叫什么名字?"]       encodings = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)       dataset = torch.utils.data.TensorDataset(encodings['input_ids'])       return torch.utils.data.DataLoader(dataset, batch_size=2)      dataloader = get_dataloader()      # 定义训练过程   def train(model, lora_adapter, dataloader, optimizer, epochs=3):       model.train()       for epoch in range(epochs):           for batch in dataloader:               inputs = batch[0]               outputs = model(input_ids=inputs).last_hidden_state                  # 简单的损失函数 (示例)               loss = outputs.mean()  # 通常你会有一个更复杂的损失函数                              optimizer.zero_grad()               loss.backward()               optimizer.step()                  # 更新模型权重               with torch.no_grad():                   updated_weight = lora_adapter(original_weight)                   for layer in model.h:                       layer.attn.c_attn.weight.copy_(updated_weight)                      print(f"第 {epoch+1}/{epochs} 轮,损失: {loss.item()}")      # 执行微调   train(model, lora_adapter, dataloader, optimizer)

输出

在实际应用中,我们可以根据具体任务和数据集调整参数和训练过程。

LoRA通过低秩矩阵分解技术,有效地减少了微调过程中的参数量,从而大幅降低了计算资源的需求。

最后补充个知识点:什么是秩?

秩(Rank)在数学和线性代数中是一个重要的概念,具体来说,它描述了一个矩阵的某些特性。

秩的定义
  • 行秩:矩阵中最大线性无关行的数量。

  • 列秩:矩阵中最大线性无关列的数量。

行秩和列秩在理论上总是相等的,因此通常直接称为矩阵的秩

换句话说,矩阵的秩是其行(或列)向量空间的维数。更正式地,如果一个矩阵 A 的秩是 r ,这意味着 A 中有 r 个线性无关的行(或列)。

举个例子:

import numpy as np      # 定义矩阵 A   A = np.array([       [1, 2, 3],       [4, 5, 6],       [7, 8, 9]   ])      # 计算矩阵的秩   rank = np.linalg.matrix_rank(A)   print(f"矩阵A的秩: {rank}")

可以看出:

对于矩阵 A:

其秩为 2 ,因为只有两行是线性无关的,第三行可以由前两行线性组合得到。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 28
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值