SaaS的新曙光:从无代码/低代码到AI超级工程师

15年前,互联网上的网页和应用设计大都依赖于开发人员,他们不得不夜以继日地工作来让他们的代码工作。

5年前,无代码和低代码工具的出现,你只需要一定的计算机基础和一个小的团队就可以构建网站、应用程序或内部工具。

今天,在生成式人工智能的推动下,我们正站在一个新时代的边缘:AI超级工程师的出现,让任何拥有电脑和互联网访问权限的个人,仅凭一己之力构造价值十亿美金的独角兽成为可能。

一、无代码/低代码

1990年代,早期的可视化编程工具如Microsoft Access和Visual Basic的出现,为无代码和低代码开发奠定了基础。2010年,无代码/低代码平台进入快速增长期,出现了一批专注于简化企业应用开发的平台,如OutSystems、Mendix和Appian。这些平台引入了更高级的拖放界面和自动化工作流。再到Bubble、Airtable 和 Zapier 等公司的出现,实现了应用程序开发的民主化,并全面增强了用户的能力。

无代码和低代码作为一种新兴的编程方法,通过图形用户界面(GUI)进行软件开发,而不需要编写传统的代码。用户可以利用模板、拖放功能、对话界面和逻辑序列来实现任何数字产品的构建。

从网站、应用程序、内部工具的构建,到数据采集、分析和可视化,无代码和低代码工具都大幅降低了开发门槛,在提升效率的同时,节省大量资源。

尽管无代码和低代码平台有许多优点,但仍存在一些缺陷和不足:

1、功能有限制性

无代码和低代码平台适合构建简单和中等复杂度的应用,但对于高度定制化和复杂的企业级应用,可能难以满足所有需求。

2、安全和合规性

无代码和低代码平台通常由第三方提供和托管,存在潜在的安全风险,包括数据泄露和未授权访问。此外,对于需要严格遵守行业法规和标准的企业,确保无代码和低代码平台的合规性可能是一个挑战。

3、开发人员接受度

虽然平台旨在简化开发过程,但对于完全没有技术背景的用户来说,仍需要时间适应和学习。此外,传统开发人员可能对无代码和低代码平台持怀疑态度,认为这些工具缺乏深度和灵活性。

二、AI超级工程师

随着AI超级工程师的崛起,未来的无代码工具将是人工智能原生的,不仅是对现有工具的增强,更是对整个软件开发生命周期的彻底改造,向100%人工智能生成的软件开发迈进。

与传统工具不同,人工智能原生无代码工具能够理解用户的工作流程需求,并自主创建完整的应用程序,从前端到后端,无需依赖多个第三方工具。这一变革不仅仅突破传统低代码/无代码平台的限制,极大地降低编程的门槛,让人人都能成为构建者。

1、AI驱动的软件规划

人工智能代理将不仅仅是遵循指令,而是与用户互动,推导出复杂的需求,并将其转化为全面的用户故事和技术架构。

2、从拖放到对话式界面

自然语言作为代码的应用将革命性地改变用户交互方式,通过直观的对话构建复杂的应用程序。

3、有针对性的指导

人工智能代理能够根据用户提供的输入(如图纸或截图)提出建议并完善需求,提升开发效率。

4、无缝的全栈开发

人工智能将生成无缝集成的用户界面和后端,所有这些都将在一个统一的平台上实现,避免任何错误。

5、工作流全面管理

人工智能原生工具不仅能自动执行任务,还能处理复杂的决策,重塑传统的工作流程。

6、无障碍系统集成

未来的开发工具将实现无障碍集成,用户只需将API文档输入系统,人工智能就能将不同的应用程序进行完美结合。

三、重新定义软件开发

在软件开发和编程领域,初创企业如雨后春笋般涌现,每家企业都专注于开发生命周期的不同阶段。这种多样化的创新正在彻底改变传统的软件开发方式。

然而,通往能够使用自然语言从头开始构建完整应用程序的端到端、全栈、无代码解决方案的旅程并非没有挑战。GPT-4 等大型语言模型的当前迭代虽然令人印象深刻,但仍然面临局限性。

目前,人工智能代码生成方法容易出错,并且缺乏端到端应用程序开发所需的准确性。这正是存在代码生成副驾驶而没有成熟的代码生成器的原因。

然而,随着大模型的发展,它们有望增强对上下文的理解,提高更准确地解释需求的能力,并更好地理解现有的代码库。我们预见,未来这些技术的集成将产生完全由人工智能在某些受限环境中生成全栈、强大、无误的应用程序。

四、一人的产品团队

在人工智能原生无代码工具引领的未来,"一个人的产品团队 "的概念将成为现实。

这意味着一个 "人工智能项目经理 "可以独自管理数字产品生命周期的所有环节。凭借人工智能的能力,非技术领域专家现在可以领导和执行复杂的技术项目,将他们从传统团队依赖关系的束缚中解放出来。

这种演变促进了一个新时代的到来,在这个时代,创造力不会受到技术能力的限制。潜在的运营效率是惊人的–更精简的团队、更低的运营成本和更快的上市时间。这种团队结构模式的转变将重新定义现代组织的含义。

五、SaaS 的新曙光

人工智能原生无代码革命将对SaaS行业产生深远影响,不只是渐进式改进,而是传统应用程序被100%由人工智能生成的定制解决方案所取代。以下是这一变革的核心要点:

1、彻底的定制化

人工智能生成的SaaS解决方案将不仅仅是微小改进,而是彻底改变了应用程序的创建方式。每个应用程序都可以根据具体需求进行完全定制,不再依赖于预先设计的模板。

2、垂直行业机遇

对于垂直行业应用来说,人工智能原生无代码工具带来了前所未有的机遇。由于90%的功能在各个行业中是相似的,只有10%需要根据行业特定的业务流程进行定制,这意味着:

  • 效率提升:通用功能的快速部署和定制功能的精准调整将大幅缩短开发周期,提高效率。

  • 成本节约:减少对传统开发人员的依赖,降低人力成本,使小型企业也能负担得起高质量的SaaS解决方案。

  • 快速响应市场变化:人工智能生成的应用程序能够快速响应市场需求的变化,进行实时调整,保持竞争力。

  • 显著提升用户体验:通过更深层次的定制和优化,用户体验将得到显著提升,满足客户的个性化需求。

AI超级工程师带来的人工智能原生无代码革命将彻底改变SaaS行业的格局。从传统应用程序到完全定制的人工智能生成解决方案,SaaS提供商将需要适应这一变革,以应对未来的挑战和抓住新的机遇。通过智能化和高效化的解决方案,SaaS行业将会迎来新一轮的发展高峰。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值