NatureMedicine丨“解锁医疗革新之门:ChatGPT ADA引领大模型AI技术在医疗领域的应用“

在《Nature Medicine》期刊上发表的文章"Large language models streamline automated machine learning for clinical studies"中,研究了语言大模型ChatGPT ADA,革命性地简化了临床研究中自动化机器学习的应用。该模型通过其卓越的自然语言处理能力,能够准确理解并执行复杂的数据分析指令,从而显著缩短了从数据预处理到最终分析结果呈现的时间。这不仅为那些没有深厚编程和统计背景的临床研究人员打开了一个全新的世界,还大幅提升了研究的效率和质量,为医疗革新提供了强有力的技术支持。

01.引言

机器学习(ML)领域的开发者与临床医生之间,一直存在一定的知识鸿沟,这大大阻碍了机器学习在临床数据分析中的深度应用。针对这一问题,该文章研究了GPT-4扩展版ChatGPT高级数据分析(ADA)在缩小这一鸿沟并高效进行机器学习分析方面的可能性。通过将来自多个医学领域的大规模临床试验的真实数据集和研究细节,无需具体指导就提交给ChatGPT ADA,我们探索了其潜力。ChatGPT ADA能够独立地根据原始研究数据训练出最先进的机器学习模型,用以预测临床结果,如癌症发展、进展、疾病并发症或生物标志物的致病基因序列。在重现和优化已发布模型之后,发现ChatGPT ADA生成的机器学习模型与手工制作的相应模型在头对头比较中,在传统性能指标上没有显著差异(p≥0.072)。值得注意的是,ChatGPT ADA制作的模型往往表现优于同类模型。总体来说,ChatGPT ADA通过简化复杂的数据分析流程,为医学领域的机器学习民主化提供了一条极具潜力的路径。然而,这种技术的应用应该是对专业培训和资源的一种增强而非替代,以促进其在医学研究和实践中的更广泛应用。

在机器学习(ML)领域的开发者与临床医生之间,一直存在显著的知识鸿沟,这大大阻碍了机器学习在临床数据分析中的深度应用。针对这一问题,研究了GPT-4扩展版ChatGPT高级数据分析(ADA)在缩小这一鸿沟并高效进行机器学习分析方面的可能性。ChatGPT ADA能够独立地根据来自多个医学领域的大规模临床试验的真实数据集和研究细节训练筛选出最先进的机器学习模型,用以预测临床结果,如癌症分期、疾病进展、并发症或生物标志物的致病基因序列。在重现和优化已发布模型之后,文章发现ChatGPT ADA生成的机器学习模型与手工制作的模型在传统性能指标上没有显著差异(p≥0.072)。值得注意的是,ChatGPT ADA制作的模型的表现往往优于同类模型。总之,ChatGPT ADA通过简化复杂的数据分析流程,为医学领域的机器学习便利化提供了一条极具潜力的路径,以促进其在医学研究和实践中的更广泛应用。

02.ChatGPT ADA

1.自然语言处理(NLP)引擎:

ChatGPT ADA依托于GPT-4技术,核心是一个先进的自然语言处理引擎。该引擎能够准确理解自然语言指令,有效处理文本类数据,并将其转换为适合机器学习分析的格式。

2.数据预处理模块:

在处理临床数据集时,本模块承担着数据清洗、格式化、归一化等关键预处理任务,以确保数据集的高质量和统一性,为下一步的ML模型训练打下坚实的基础。

3.机器学习模型库:

ChatGPT ADA配备了一个包含梯度提升机(GBM)、随机森林(RF)等经典以及现代机器学习模型的丰富模型库。该库的设计旨在使ChatGPT ADA能够根据数据集的特性和具体需求,自动挑选出最适合的机器学习模型。

4.模型选择与优化模块

此模块的职责是基于数据集特征和ML任务的具体要求,从模型库中筛选出最合适的模型。之后,通过调节模型参数来进一步提升模型性能,整个过程无需人工介入,实现模型选择和优化的自动化。

5.模型解释与分析工具:

为了提高模型透明度和可信度,ChatGPT ADA集成了SHAP等先进的模型解释和分析工具。这些工具不仅提供了对模型决策逻辑的深入剖析,还能明确指出哪些特征在预测结果中起到了关键作用。因此,研究人员可以更直观地理解模型的内部机制,确保其在实际应用中的可靠性与可解释性。

6.结果输出与可视化模块

该模块专责以直观明了的方式展示模型分析结果,包括但不限于图表和报告形式。通过这种展示方式,研究人员能够迅速把握数据特点、评估模型效能并理解预测结果的具体含义。这不仅提高了数据解读的效率,还增强了对模型表现的全面认识,有助于研究人员在复杂的医疗环境中做出更加准确和可靠的决策。

ChatGPTADA架构示意图

03.实验结果

1.模型ROC曲线:

ChatGPT ADA创建的机器学习模型的接收者操作特征(ROC)曲线(蓝色实线)和由经验丰富的数据科学家重新实现的验证性机器学习模型的ROC曲线(红色点线)如下图所示。图中绘制了真阳性率(敏感性)与假阳性率(特异性),灰色对角线代表无鉴别线。通过引导法54次替换和在测试集上重绘1000次(独立样本数量:内分泌肿瘤学数据集,n = 295;胃肠道肿瘤学数据集,n = 6698;耳鼻喉学数据集,n = 569;心脏病学数据集,n = 430)来确定均值和统计分布测量。AUROC代表ROC曲线下面积,表明ChatGPT在高级数据分析中的卓越应用。通过这些数据和分析结果,可以看出ChatGPT ADA在处理复杂临床数据和实现自动化机器学习方面的巨大潜力,为临床研究提供了重要技术支持。

ROC曲线

04.研究意义

1.机器学习在医疗领域的应用:机器学习(ML)技术的快速发展正推动着人工智能在医疗领域的广泛应用,特别是在疾病诊断和预后预测方面。借助于ChatGPT ADA等先进工具,在医疗数据分析和模型优化中的应用研究揭示了这些技术如何助力医疗研究和实践的革新。

2.简化复杂ML方法的使用:ChatGPT ADA等工具的开发,极大地简化了高级ML方法的访问和使用过程。这些工具通过自动化和简化ML工作流,降低了技术门槛,让不同背景的研究人员也能够轻松参与到医疗数据的分析和模型建立中。

3.提升医疗研究的效率与准确性:利用ChatGPT ADA等高级工具,研究人员可以更加快速地构建、测试和验证ML模型,这不仅提高了研究的效率,同时,这些工具在数据处理和模型优化方面的高效能也有助于增强模型的准确性,从而为临床决策提供更加可靠的支撑。

4.促进跨学科合作:通过涵盖多个临床数据集和领域的分析,该研究促进了不同学科之间的合作与交流。这种跨领域的合作有利于发掘新的研究视角和方法,从而为医疗研究的综合进步打下基础。

上海交通大学丨3D胸部CT医学图像数据集点击上方蓝字关注(联系方式见文末)

NatureMedicine丨智鉴肝途 —— AIM-MASH大模型

在《Nature Medicine》期刊上发表的文章“AI-based automation of enrollment criteria and endpoint assessment in clinical trials in liver diseases”中,研究了一种结合卷积神经网络(CNN)与图神经网络(GNN)技术的新型方法。这种方法通过创建一个名为AIM-MASH的模型,能够对代谢相关脂肪性肝病和脂肪性肝炎(Metabolic Associated Fatty Liver Disease and Steatohepatitis, MASH)的病理学特征进行精确且可重复的量化评估。

01.引言

AIM-MASH模型采用了先进的深度学习技术,特别是卷积神经网络(CNN)和图神经网络(GNN),实现了对肝脏组织学特征的自动化和智能化识别与量化。传统治疗方式在评估治疗效果时,通常依赖于病理学家的主观判断,这不可避免地带来了较大的个体差异和主观性。然而,AIM-MASH模型通过其自动化和智能化的分析流程,显著减少了人为因素对结果的影响,提高了评估的客观性和一致性。

AIM-MASH模型不仅具备对非酒精性脂肪性肝病(NAFLD)患者的组织学特征进行精确评估的能力,还能够综合评估肝脏的多个组织学特征,包括脂肪变性(steatosis)、气球样变(ballooning)、小叶内炎症(lobular inflammation)和纤维化(fibrosis),从而更全面地反映肝脏病变的状态。传统的组织学评估通常需要病理学家投入大量时间和精力,且在分析有限数量的样本时易受主观因素影响,导致评估结果存在一定的变异性。然而,AIM-MASH模型通过其先进的架构,能够快速处理大量病理图像数据,大幅提高了评估效率和一致性。

02.AIM-MASH

AIM-MASH模型是一种综合性的数字病理工具,旨在通过自动化手段对非酒精性脂肪性肝病(NAFLD)患者的组织学特征进行精确评估。该模型由多个卷积神经网络(CNN)和图神经网络(GNN)组成,每个部分均具有特定的功能和作用。

模型组成结构

1. 输入与处理
  • 输入:用由专家病理学家注释的数字化 H&E 和 MT 染色图像进行训练,分别部署在 H&E 或 MT 染色的 WSI 上,以识别组织学特征。

  • 处理:通过图像预处理步骤,包括图像增强、标准化等,以提高模型的学习效率和准确性。

2. 卷积神经网络(CNN)
  • 功能:CNN主要用于特征提取和图像分割。

  • 组成

  • H&E CNNs:负责分割H&E染色图像中的相关组织学特征,如脂肪变性(包括大泡性脂肪变性和小泡性脂肪变性)、肝细胞气球样变、小叶炎症等。

  • MT CNNs:针对MT染色图像,用于分割纤维化、胆管和血管等特征。

  • 检测CNN:检测并排除图像中的伪影,如气泡、折叠、污渍等,以提高后续分析的准确性。

3. 图神经网络(GNN)
  • 功能:GNN用于基于CNN提取的特征来预测组织学评分。

  • 组成

  • GNN的节点和边由CNN预测的相关组织学特征构建。

  • 利用从多个病理学家处获得的MASH CRN评分作为训练标签,GNN学习如何将这些特征映射到具体的组织学评分上。

  • 通过使用“混合效应”模型,GNN能够校正不同病理学家评分偏差的影响,提高评分的客观性。

4. 输出
  • 将GNN生成的序数评分映射到连续范围内,以提供更细粒度的评分结果。

  • 这种分两阶段的机器学习方法产生了针对MASH CRN MAS成分评分和纤维化分期的患者水平预测。

模型构架示意图

03.实验结果

模型性能评估

1.与病理学专家共识:

  • 对四个主要组织学特征(脂肪变性、气球样变、小叶炎症和纤维化),模型与共识的协议率分别为:脂肪变性(κ = 0.74),气球样变(κ = 0.70),小叶炎症(κ = 0.67),纤维化(κ = 0.62)。这些结果显示了模型在评估这些特征方面的准确性和可靠性。

  • 在某些情况下,模型与共识的协议率甚至超过了病理学家间的协议率,特别是在纤维化评分和MAS评分≥2点的减少方面,这进一步强调了模型的稳定性和精确性。

模型性能准确性评估

2.基于 AI 的入组标准和疗效分级/分期

a,该模型衍生的评分能够区分纤维化分期F1-F3与F4,以及将MAS≥4(每项成分评级≥1)与MAS<4分开,这对于确定临床试验入组标准至关重要。这一评分是基于从STELLAR-3和STELLAR-4临床试验中获取的活检样本(共605例)进行验证的。得出的AIM-MASH一致性与各位病理学家的一致性大体相当。条形图展示了每个入组标准终点的点估计值,而虚线则表示利用10,000个bootstrap样本得出的95%置信区间。

评估2b期和3期MASH临床试验中常用的疗效终点时,AIM-MASH一致性也与传统病理学家的一致性基本相同。采用满足以下终点的患者活检对2b期MASH临床试验的外部保留验证数据集进行了评估:纤维化改善而无MASH恶化(共279例)、MASH消退而无纤维化恶化(共279例)以及MAS降低≥2(共326例)。条形图显示了每个疗效终点的点估计值,而虚线则表示利用10,000个bootstrap样本得出的95%置信区间。

3.基于 AIM 的回顾性药物疗效评估

a:在评估2b期ATLAS试验中,该试验旨在评估晚期MASH纤维化患者的联合疗法,AIM-MASH模型被部署于患者从基线和第48周的全切片图像(WSI)上。AIM-MASH模型显示,在针对MAS≥2的改善、纤维化改善但MASH恶化,以及MASH分辨率无纤维化恶化的试验终点方面,与试验中心读者相比,识别出更高比例的反应者。对于MAS≥2的改善,AI与中心读者的比值比(ORs)分别为5.1(95% CI 2.0-13.1)和5.7(95% CI 1.6-20.2);Cochran-Mantel-Haenszel(CMH)检验统计量为11.9(P = 0.0006)和7.9(P = 0.005)。对于未见MASH恶化的纤维化改善,AI与中心读者的OR分别为2.2(95% CI 0.7-6.3)和2.2(95% CI 0.6-7.7);CMH检验统计量分别为2.1(P = 0.152)和1.7(P = 0.196)。对于未见纤维化恶化的MASH分辨率,AI的OR为2.7(95% CI 0.8-8.8);中心读者的OR未定义,因为未能确定安慰剂组的反应者。AI的CMH测试统计量为2.7(P = 0.101),中心读者的CMH测试统计量为2.0(P = 0.155)。

b:AIM-MASH检测到的经过安慰剂调整的反应率高于中心读者检测到的反应率。

04.研究意义

  1. 降低评估变异性
  • 病理学家在评估MASH组织学特征时存在较高的变异性,这可能会影响临床试验的可靠性和有效性。AIM-MASH模型通过提供一致且可重复的评估,有助于减少评估者之间的变异性。

  • 实验结果显示,AIM-MASH模型的预测结果在不同病理学家之间的变异低于传统评估方法,显示出其作为辅助工具的潜力。

  1. 提高评估准确性
  • AIM-MASH模型通过利用AI技术,如卷积神经网络(CNN)和图神经网络(GNN),能够更精确地识别和量化MASH组织学的关键特征,如脂肪变性、气球样变、小叶内炎症和纤维化等。

  • 与专家病理学家共识评分的比较显示,AIM-MASH模型的预测与专家意见高度一致,提高了组织学评估的准确性。

3.推动MASH研究的标准化

  • AIM-MASH模型的开发和应用为MASH组织学评估提供了标准化的工具和方法。这有助于不同研究机构之间的数据共享和比较,推动MASH研究的标准化和规范化。

  • 标准化评估方法的推广将有助于提升整个MASH研究领域的质量和水平。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值