Label Studio 数据标注工具详解

Label Studio 是一个开源的数据标注工具,由 Human Signal(原 Heartex)推出,主要用于机器学习和数据科学领域,帮助用户对各种类型的数据进行标注和注释,以生成高质量的训练数据。它支持文本、图像、音频、视频等多种数据类型的标注,适用于自然语言处理、图像识别、语音识别等多种应用场景。Label Studio 的特点在于其灵活性、易用性和强大的功能特性,使其成为研究人员和开发者的首选工具。

一、功能特性

Label Studio 的主要功能包括:

多类型数据支持:支持文本、图像、音频、视频等多种数据类型的标注,满足不同AI模型的训练需求。

自定义标注界面:用户可以根据项目需求自定义标注界面和标注任务,调整标注工具的外观和功能,提高工作效率。

交互式标注体验:提供交互式的标注体验,用户可以在浏览器中方便地进行标注工作,并实时查看标注效果。

集成与扩展性:可以与其他工具和平台集成,如机器学习框架、数据库、云存储等,同时支持插件和脚本扩展功能,以满足更复杂的标注需求。

开源与可扩展:Label Studio 是开源的,意味着用户可以自由地修改和扩展其功能,社区也提供了丰富的插件和模板,帮助用户快速开始标注工作。

易于使用:界面直观易用,即使是没有编程背景的用户也能快速上手进行标注工作。

二、Label Studio提供的数据标注模板

Label Studio提供了多种模板以辅助数据标注,同时也允许您通过专门设计的配置语言创建自定义模板。

常见的标注模板和应用场景涵盖如下图:

三、使用Label Studio设置机器学习模型

通过Label Studio的机器学习SDK连接您的首选机器学习模型,遵循以下步骤:

  1. 启动自己的机器学习后端服务器。

  2. 在项目设置的模型页面连接Label Studio至该服务器。

这使您能够实现:

预标注数据,基于模型预测。

在线学习,新注释生成时即时重训练模型。

主动学习,仅对数据中最复杂的示例进行标注。

四、将Label Studio与现有工具集成

您可以独立使用Label Studio作为机器学习工作流程的一部分,或将前端或后端集成到现有工具中。

五、管理界面

六、安装使用Label Studio

Docker本地安装

在Docker容器中运行Label Studio,并在http://localhost:8080访问。



`docker pull heartexlabs/label-studio:latest   docker run -it -p 8080:8080 -v $(pwd)/mydata:/label-studio/data heartexlabs/label-studio:latest`


生成的所有资产,包括SQLite3数据库存储label_studio.sqlite3和上传文件,都位于./mydata目录下。

使用pip本地安装



`# 需要Python >=3.8   pip install label-studio   # 在http://localhost:8080启动服务器   label-studio`


使用Anaconda本地安装



`conda create --name label-studio   conda activate label-studio   conda install psycopg2   pip install label-studio`


本地开发安装



`# 安装所有依赖项   pip install poetry   poetry install   # 执行数据库迁移   python label_studio/manage.py migrate   python label_studio/manage.py collectstatic   # 以开发模式在http://localhost:8080启动服务器   python label_studio/manage.py runserver`


总结

Label Studio 作为一个多功能、易用且开源的数据标注工具,在机器学习和数据科学领域具有广泛的应用前景。无论是在学术研究还是在工业应用中,Label Studio 都能够有效地提高数据标注的效率和质量,为AI模型的训练提供坚实的数据支撑。

官方的文档:https://labelstud.io/guide/get_started.html

仓库地址:https://github.com/HumanSignal/label-studio

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值