前段时间,李沐在上交大演讲谈到,多模态是AI领域的下一个趋势,其中多模态预训练尤其值得关注!
实际上,不仅李沐看好,北大高文院士团队、微软亚洲研究院等也都在争先研究!各大顶会自然也少不了其身影。比如最新公布的NeurIPS24便有多篇成果!其中模型CMG,更是在跨模态事件定位任务中,实现了准确率提升47.7%的拔群效果!
主要在于,其能够利用文本、图像、音频等多种类型的数据模态,在海量无标注的数据上进行预训练。从而既能增强模型对不同类型数据的理解和处理能力,提升性能;又能缓解数据标注难题,提高数据的利用效率。且其在CV、NLP、多媒体处理、金融、医疗、交通等领域,都有着广泛应用。
为让大家能够紧跟领域前沿,获得更多idea启发,我给大家准备了15种创新思路,原文和代码都有!
Achieving Cross Modal Generalization with Multimodal Unified Representation
内容:论文介绍了一个新的任务叫做跨模态泛化,旨在学习从成对的多模态数据中预训练出一个统一的离散表示,以便在下游任务中实现对其他模态的零样本泛化能力。论文提出了一个名为Uni-Code的框架,包含两个关键贡献:双重跨模态信息解耦模块和多模态指数移动平均。这些方法促进了模态间的双向监督,并在共享的离散潜在空间中对齐了语义等价信息,实现了多模态序列的细粒度统一表示。
MAP:Multimodal Uncertainty-Aware Vision-Language Pre-training Model
内容:论文介绍了一个名为MAP(Multimodal Uncertainty-Aware Vision-Language Pre-training Model)的模型,它通过概率分布编码器(PDE)将多模态数据的表示视为概率分布,以捕捉数据中的不确定性。MAP模型结合了序列级和特征级交互,提出了三种基于分布的预训练任务:D-VLC、D-MLM和DITM,以处理大规模未标记数据集中的多模态不确定性。
Pre-trained multimodal large language model enhances dermatological diagnosis using SkinGPT-4
内容:文章介绍了一个基于多模态大型语言模型的交互式皮肤科诊断系统SkinGPT-4。该系统通过结合预训练的视觉变换器和名为Llama-2-13b-chat的大型语言模型,经过两步训练策略,能够在用户上传皮肤照片后自动评估图像,识别皮肤状况的特征和类别,进行深入分析,并提供交互式治疗建议。研究者们通过对150个真实病例的定量评估,展示了SkinGPT-4与董事会认证的皮肤科医生相比具有一致性的准确诊断能力。尽管SkinGPT-4并非医生的替代品,但它增强了用户对自己医疗状况的理解,改善了患者与医生之间的沟通,加快了皮肤科医生的诊断过程,并有可能推进以人为中心的护理和医疗公平,特别是在资源不足的地区。
Structural Information Guided Multimodal Pre-training for Vehicle-Centric Perception
内容:文章提出了一个名为VehicleMAE的新型车辆中心的预训练框架,它通过结合车辆外形信息中的空间结构和自然语言描述中的语义结构来有效地重建遮蔽的车辆外观。具体来说,该框架明确提取车辆的草图线条作为空间结构的表现形式,并利用基于CLIP大模型的知识蒸馏,通过分析配对/非配对车辆图像-文本样本的相似性,来帮助更好地理解车辆。研究者们构建了一个包含约100万辆车辆图片和12693条文本信息的大规模数据集Autobot1M来预训练模型,并通过在四个基于车辆的下游任务上的广泛实验验证了VehicleMAE的有效性。
BEVBert: Multimodal Map Pre-training for Language-guided Navigation ICCV23
内容:文章介绍了BEVBert,这是一个用于视觉和语言导航(VLN)任务的多模态预训练模型。BEVBert通过构建局部度量地图和全局拓扑地图的混合地图来平衡短期推理和长期规划的需求,并提出了一种新的预训练框架,通过跨模态变换器学习多模态地图表示,增强了空间感知的跨模态推理能力,从而促进了语言引导的导航目标。在四个VLN基准测试中,BEVBert实现了最先进的性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。