Nature Communications近期的研究基于大模型的多模态集成能力,将文本形式的临床信息有效整合到靶区勾画任务中。此种技术路线模拟了临床专家在有限数据下整合图像和文本的学习方式,补充了医生决策时视觉元素之外的考量。同时,该研究所反映的多模态融合技术也被越来越多的文章所使用。
引言
通常情况下,医生做出决策时往往需要综合影像和其它临床数据,这与当前大多数聚焦于单一模态的研究存在显著区别。而随着大模型和多模态技术的快速发展,人工智能在处理不同类型数据并理解其内在关联方面展现出显著进步。大模型凭借其庞大的训练数据和复杂的架构,可以轻松适配并处理图像、文本等多种模态的数据,从而提供更全面的诊断和治疗支持。
靶区勾画在放射治疗中至关重要,其不仅依赖影像特征,而且需要结合如肿瘤分期、病理诊断、转移程度在内的临床信息。换句话说,靶区勾画任务本质上需要多模态信息的整合。有鉴于此,多模态方法在放射肿瘤学中应用可以说是一个必然的趋势。Nature Communications近期的研究基于大模型的多模态集成能力,将文本形式的临床信息有效整合到靶区勾画任务中。
数据及方法
该研究针对乳腺癌、前列腺癌两种肿瘤开展研究,分别收集了1391和1084名患者的CT影像和临床信息。其中,临床信息涵盖了原发癌位置、手术类型、疾病分期以及淋巴结转移状态等。
该研究采用了双向自注意力和交叉注意力机制,提出了一种多模态人工智能模型。该模型主要包含图像编码器、语言大模型、多模态交互对齐以及图像解码器4个模块。
图像编码器及图像解码器模块采用3D残差U-Net实现。3D残差U-Net通过卷积操作逐层提取特征,能够提取并保留图像的空间和分辨率信息。同时,该研究将所有影像重采样到相同的体素间距并对图像强度值进行截断和线性归一化,以便保证输入模型时数据的一致性。
语言大模型模块选用了预训练的Llama2-7B-chat模型。为了使Llama2-7B-chat模型适配医疗领域多模态任务,该研究采用了文本提示词微调的方法。微调旨在使大模型能够更好地理解和处理放射治疗中的靶区勾画任务,进而使其在生成特征向量时能更好地反映出临床需要关注的重点。
多模态交互对齐模块采用了SAM模型的双向Transformer模块来实现。通过逐层的自注意力和交叉注意力操作,该模块使得文本信息和图像信息互相对齐,进而确保图像编码器能够高效提取与文本相关的有意义表征。这种交互对齐机制能够将更多的临床上下文信息整合入靶区勾画任务中,为后续的靶区勾画提供更高的精度和一致性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。