本文将详细介绍 Qwen3-30B-A3B 模型在本地部署过程及其全面能力测试。通过 LM Studio 等工具,在个人设备上部署此模型,体验从数学推理、逻辑分析到创意写作、多语言翻译及代码生成的全方位 AI 能力,看下这款强大的大语言模型真正的能力如何。
本文会提供所有的提示词,方便拷贝和测试,如果还有不懂的地方,可以查看视频号跟着一步步完成。
官方介绍
2025年4月29日,阿里巴巴通义千问团队推出了最新一代大型语言模型系列 Qwen3。它采用创新的双模推理设计,支持"思考模式"和"非思考模式",能在复杂任务和简单问题之间灵活切换。模型支持119种语言和方言,在编码、推理、多语言理解等方面实现了显著突破。
它的旗舰模型 Qwen3-235B-A22B 在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现出极具竞争力的结果。此外,小型 MoE 模型 Qwen3-30B-A3B 的激活参数数量是 QwQ-32B 的 10%,表现更胜一筹,甚至像 Qwen3-4B 这样的小模型也能匹敌 Qwen2.5-72B-Instruct 的性能。
前期准备
- MacOS(Apple Silicon) / Windows / Linux ,三个系统选其一
- LM Studio
- Qwen3-30B-A3B 模型
LM Studio是一款专为本地运行大型语言模型(LLM)设计的桌面应用程序。它允许用户在个人计算机上离线下载、管理和运行各种开源大语言模型,包括Qwen3、Llama 3、Mistral等。
本地部署为什么选用 Qwen3-30B-A3B 模型?
Qwen3-30B-A3B是一个高效的MoE(混合专家)模型,总参数量为30B,激活参数仅为3B。它具有以下特点:
- 性能强大:在仅激活3B参数的情况下,性能却超过了激活参数为30B的QwQ-32B的密集模型
- 资源友好:相比同性能的密集模型,显存占用大幅降低
- 推理速度快:在推理阶段的计算量减少,提升了推理速度,适合本地部署和实时应用场景
- 完整功能:支持双模推理、119种语言和全系列工具调用能力
- 部署灵活:可在配置适中的消费级GPU上流畅运行
这使得Qwen3-30B-A3B成为本地部署的理想选择,能在保持出色性能的同时大幅降低硬件要求。如果你的设备配置较低,Qwen3-4B 提供了一个轻量级的选择,适合进行简单体验。
想要体验满血版 235B 参数的用户,其在线体验地址:https://chat.qwen.ai/ [1]
本地部署验证
针对 Qwen3 的强大能力,我设计了一些提示词,用于测试模型的核心能力,便于快速验证。
01 推理能力
Qwen3 在数学和逻辑推理等评测中,显著超过QwQ和同尺寸的非推理模型,达到同规模业界顶尖水平。
日常数学问题测试
我计划装修一个长4.5米、宽3.2米的卧室,地板材料每平方米售价为120元,墙面漆每平方米需要40元(墙高2.8米)。
1. 请计算装修所需的总费用(不含天花板)
2. 如果我的预算是3000元,够吗?如果不够,还差多少?
答案✅,思考时间花费了 1 分 43 秒。
逻辑推理测试
小明、小红、小刚和小丽四个人去看电影。已知:
1. 小明不喜欢坐在最边上
2. 小红和小丽一定要坐在一起
3. 小刚想坐在最右边的位置
请问,这四个人有哪些可能的座位安排方式?给出所有可能性并解释你的推理过程。
答案✅,列举出了所有的正确答案,思考时间花费了 5 分 53 秒。
总结:对于逻辑推理相关的问题,在默认开启thingking
模式的情况下,思考时间有些长,需要等待较长的时间,在我的观察下,思考过程中会快速的得出了正确答案,但是模型会在其中一直否定自己,花费更长时间进行验证,最后总体的思考时间较长。同时每个问题需要新开一个窗口,会出现之前已回答问题一起思考的情况。
02 人类偏好能力
创意写作、角色扮演、指令遵循能力均大幅提升,通用能力显著超过同尺寸模型。
创意写作测试提示词
请以"遗忘的城市"为主题,写一篇短篇科幻小说开头(约300字),要求氛围神秘,包含未来科技元素。
角色扮演测试提示词
你是一位经验丰富的天文学家,正在接受一位10岁孩子的采访。请用生动有趣且科学准确的方式回答:为什么有的星星会闪烁?什么是黑洞?我们如何知道宇宙在膨胀?
总结:对于创作类问题,思考时间很短,能够快速得到答案,同时回答的问题也很有趣。
03 多语言能力
Qwen3支持119种语言和方言,多语言翻译、指令理解、常识推理能力都明显提升。
多语言翻译测试提示词
请将以下中文段落翻译成法语、西班牙语和日语:
"人工智能技术正在改变我们的生活方式。从智能助手到自动驾驶汽车,这些创新正在各个领域带来革命性的变化。未来十年,我们将看到更多令人惊叹的发展。"
多语言理解测试提示词
Please answer the following questions in the same language they are asked:
1. 中国的四大发明是什么?
2. ¿Cuáles son las principales atracciones turísticas de España?
3. Quels sont les plats traditionnels français les plus célèbres?
4. What are the most significant technological advancements of the 21st century?
语言分别是:中文、西班牙语、法语和英语,但是最后一种回答使用的却是法语,显然是错误的。所以我在官方网站进行验证下是不是都有这样的问题。
满血 Qwen3-235B-A22B:
官方满血版是没有问题的,思考过程也非常好。
Qwen-30B-A3B:
官方 Qwen3-30B-A3B 同样思考过程没有问题,识别出了四种语言,但回答却是错误的,多次测试都一样。
04 编码能力
前端React项目测试提示词
使用Vite + React初始化一个项目,并且完成一个登录组件,样式使用TailwindCSS。要求:
1. 包含用户名、密码字段和记住我选项
2. 实现基本表单验证
3. 添加响应式设计,适配移动端
4. 提供完整的代码和安装依赖步骤
图片太多了,就不截取了,后面可以看我录制的视频。
算法实现测试提示词
请实现一个高效的图算法解决以下问题:
给定一个无向图,实现Dijkstra算法找到从起点到所有其他顶点的最短路径。提供Python代码实现,并解释时间复杂度和空间复杂度。
最后如果发现 Qwen3 的思考时间过长的话,可以添加/no_think
来控制:
非推理模式的速度要快的多!
最后
如何更好地使用Qwen3?充分发挥Qwen3的能力,可以考虑以下几点策略:
-
灵活利用双模式推理:针对复杂问题启用"思考模式",让模型进行详细推理;对于简单问题使用"非思考模式"获取快速响应。可以通过在提示词中添加"/think"或"/no_think"来控制。
-
利用多语言能力:Qwen3支持119种语言,可以直接用多种语言提问或要求模型进行多语言翻译,无需切换模型。
-
优化提示词设计:
-
- 提供清晰具体的指令和足够的上下文
- 对于复杂任务,将大问题分解为多个小步骤
- 使用格式化的输出要求(如JSON、表格等)获取结构化内容
-
配合工具使用:搭配Qwen-Agent可以实现更强的工具调用能力,让模型与外部工具和API交互,扩展其功能边界。
-
本地部署优化:
-
- 使用LM Studio等工具进行高效本地部署
- 根据硬件条件选择合适大小的模型(从0.6B到32B)
- 考虑量化版本以降低资源消耗
通过合理利用Qwen3的这些特性,无论是个人用户、研究人员还是开发者,都能在各自领域获得更高效、更智能的语言处理体验。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。