《“分诊智能体”:迈向更好的基于大语言模型的临床分诊多智能体协作》

这篇题为《“分诊智能体”:迈向更好的基于大语言模型的临床分诊多智能体协作》的文章提出了一种新颖的异构多智能体框架“分诊智能体”,用于改进临床分诊中的协作决策。该框架旨在解决传统人工临床分诊中存在的可变性大、工作量大等问题,并克服直接应用大语言模型(LLM)于临床分诊时面临的挑战,例如临床分诊任务的复杂性和动态性。

本文首先指出,急诊科(ED)患者数量的全球性增长对高效的临床管理,特别是临床分诊,提出了重大挑战。传统的依赖专家人工进行临床分诊的方法费时费力,且容易导致人员疲劳,从而降低准确性和效率,增加误诊的风险。虽然大语言模型展现出强大的推理和理解能力,但直接应用于临床分诊仍面临挑战。现有深度学习模型虽然有所帮助,但由于需要大量标注数据且难以实时适应复杂动态的临床场景,其性能往往不足。而单一大语言模型也难以应对紧急情况下的各种复杂情况,例如患者情况的多样性和对多学科协作的需要。因此,多智能体方法是提高性能的必要途径。

本文的核心贡献在于提出了“分诊智能体”框架。该框架利用大语言模型进行角色扮演,结合自置信度和提前终止机制来改进多轮讨论中的文档推理和分类精度。它通过检索增强生成(RAG)方法利用医疗“紧急严重程度指数”手册提供精确的临床知识,并在决策过程中整合粗粒度和细粒度的“紧急严重程度指数”级别预测。“分诊智能体”的五个阶段包括:1)文档分配,将患者病历分配给专家智能体;2)基于组的分类分析,智能体被分成两组进行粗粒度和细粒度分类;3)置信度报告总结,生成总结报告;4)协作讨论,智能体根据总结报告进行讨论,迭代改进;5)共识达成,最终得出精确的分类结果。

本文详细介绍了“分诊智能体”框架的每个阶段。在文档分配阶段,患者的临床记录被分配给专家智能体,以启动“紧急严重程度指数”讨论。在基于组的文档分类阶段,智能体被分成两组,分别采用直接细粒度分类和粗到细粒度分类两种策略。直接细粒度分类由单个智能体直接分配“紧急严重程度指数”级别;粗到细粒度分类则由两个智能体分别进行粗略分类和精细化分类,以提高效率和精度。置信度报告总结阶段,汇总智能体之前的分类结果、置信度分数、理由和证据,构建总结提示,生成综合报告。协作讨论阶段,智能体根据总结报告进行多轮讨论,迭代改进分类结果。提前终止机制则通过设定条件,在智能体达成一致或置信度足够高时提前终止讨论,以提高效率。最后,在共识达成阶段,智能体整合讨论结果,达成最终共识。

为了评估“分诊智能体”的性能,本文构建了一个临床分诊数据集,这是首个公开发布的包含临床记录、“紧急严重程度指数”级别和人类专家性能基准的临床分诊数据集。实验结果表明,“分诊智能体”在三个临床分诊测试集上显著优于现有基于大语言模型的方法,降低了不一致率。

本文还对相关工作进行了综述,包括大语言模型在医疗领域的应用和基于大语言模型的多智能体协作。在大语言模型在医疗领域的应用方面,本文提到大语言模型已越来越多地应用于医疗实践,包括文本诊断、基因分析、制药应用和医疗摘要生成等。在基于大语言模型的多智能体协作方面,本文指出,研究重点已从独立的自主智能体转向协作的多智能体系统,通过迭代反馈和团队合作增强大语言模型智能体的能力。

总之,这篇文章提出了一种新颖的、基于多智能体协作的临床分诊框架“分诊智能体”,该框架有效地结合了大语言模型的强大能力和医疗领域专家的知识,显著提高了临床分诊的准确性和效率。同时,本文还公开发布了第一个新的临床分诊数据集和代码,为该领域的研究提供了宝贵的资源。“分诊智能体”框架的创新之处在于其多智能体协作机制,以及自置信度和提前终止机制的引入,这些都使得该框架在处理复杂临床分诊任务时具有显著优势。这项工作对推动临床分诊的自动化和智能化具有重要意义。未来研究可以进一步探索如何改进该框架,例如优化智能体间的沟通机制,以及更好地处理不确定性和噪声数据。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值