Agentic RAG:超越传统RAG与案例分享

在人工智能快速发展的今天,检索增强生成(Retrieval-Augmented Generation,简称 RAG)技术已经成为大语言模型(LLM)应用的关键突破。RAG 框架不断推陈出新、日新月异,从 Navie RAG、高级 RAG、模块化 RAG,发展到现在的 Graph based RAG,甚至混合高级 RAG 与 GraphRAG 的 HybridRAG。那么,如何在日新月异的 RAG 技术下,开发一种能够不断适应的框架呢?今天,我们将深入探讨 Agentic RAG,这一革命性的方法正在重新定义智能信息检索与生成的边界。

本文先讨论 Agentic RAG 常见范式,然后推荐一些流行的 Agentic RAG 开发示例:Nvidia 的 Agentic RAG 案例和基于 LlamaIndex 的 Agentic RAG 设计等。

1. Agentic RAG:智能决策的新范式

传统 RAG 系统的工作方式相对简单:接收用户查询 → 检索相关文档 → 基于文档生成答案。但在实际应用中,这种线性模式通常显得过于刻板和局限。现实世界的问题往往错综复杂,需要更加智能和灵活的方案。

Agentic RAG 引入了一个关键概念:让 Agent 在整个信息检索和生成过程中主动思考和决策。这不仅仅是一个技术术语,而是一种全新的智能工作范式。

1. 查询分析:智能重构

在 Agentic RAG 中,原始用户查询不再被直接照搬,而是经过精细的分析和重构:

  • 查询重写:将模糊或复杂的查询转化为更加精确、可检索的形式

  • 智能路由:判断是否需要额外的数据源来全面回答问题

想象一下,用户询问"最近的天气对公司销售有什么影响"。传统 RAG 可能会束手无策,而 Agentic RAG 会:

  1. 识别需要整合销售数据和天气信息

  2. 智能地从不同数据源检索相关信息

  3. 综合分析并生成有洞察力的答案

2. 多源数据检索:打破信息孤岛

Agentic RAG 的一大优势在于其灵活的数据检索能力:

  • 实时用户数据:根据用户当前上下文动态调整

  • 内部文档:精准匹配组织内部知识

  • 外部数据源:从互联网实时获取最新信息

举个例子,对于一个客户支持场景,系统可以:

  • 查看用户历史工单

  • 检索产品使用手册

  • 获取最新的技术更新信息

  • 综合生成最精准的解决方案

3. 动态答案生成与优化

Agentic RAG 不满足于仅仅给出一个答案,而是通过多轮迭代不断优化:

  • 生成多个候选答案

  • 评估每个答案的准确性和相关性

  • 必要时重新查询或调整生成策略

4. 从失败中学习:自我修正机制

传统系统遇到无法回答的问题往往会直接告诉用户"无法解决"。而 Agentic RAG 则会:

  • 识别信息鸿沟

  • 主动寻找补充信息源

  • 尝试重新生成更优答案

2. Agentic RAG 资源推荐

1. Nvidia Agentic RAG

Nvidia 展示的 Agentic RAG 只是一个示例,参考了如下 3 篇论文实现。

  • 路由 (Adaptive-RAG[1]). 根据问题路由到不同的检索器

  • 回退 (Corrective RAG[2]). 如果文档与查询不相关,则回退到网络搜索

  • 自纠错 (Self-RAG[3]). 当答案具有幻觉或者未能回答问题时候,自动尝试修正答案。

它基本实现了如下图所示的框架,它使用打分机制评判答案是否包含幻觉,是否需要加入新的信息。具体地址可以参考:https://github.com/NVIDIA/workbench-example-agentic-rag/blob/main/code/langgraph_rag_agent_llama3_nvidia_nim.ipynb,整个代码基于Langchain开发,使用流程编排完成,包含大量的Prompt设计。

这个项目还包含ChatUI,可以显示具体的运行流程,如下图所示。

在这里插入图片描述

2. LlamaIndex Agentic RAG

DeepLearning.ai 的课程Agentic RAG[4],由 LlamaIndex 的创始人 Jerry Liu 讲授,描述了一种使用 LlamaIndex 如何构建 Agentic RAG 的流程。它将文档包含检索等流程包装成为一个 Tool,然后包装到 Agent 中,供路由选择调用。而在路由前,它会尝试分解或重写用户查询,然后交给 Router,大概设计流程如下。

agentic-rag-llama

比如你可能会问:“比较一下 adapt rag 和 self-rag,首先分析各个论文中的方法”,查询重写模块可能会将用户提问分解为:

  • adapt rag 中的方法

  • self rag 中的方法

  • 对比 self rag 和 adapt rag

然后 Router 会分别调用 self rag 的 summary tool 和 adapt rag 的 summary tool,然后由 LLM 进行总结输出。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Agentic RAG 是一种先进的信息检索和生成框架,它结合了代理(Agent)、检索增强生成(Retrieval-Augmented Generation, RAG)以及大型语言模型(LLM)的能力。这种架构旨在更有效地处理复杂的查询请求,并提供更加准确的答案。 核心特点包括: - 动态编排机制:利用AI代理的灵活性来适应不同类型的用户需求,调整检索生成策略以解决复杂的问题。 - 查询优化:当初始检索结果不理想时,系统会尝试改进查询条件或者采用其他手段提高结果质量。 - 工具调用:可以集成外部工具和服务,例如特定领域的API或数据库访问权限,从而扩展系统的功能范围。 - 多步推理能力:支持需要连续逻辑步骤才能完成的任务解答过程。 - 应用于各个领域:可以根据具体的应用场景创建专业的文档代理(Doc Agent),如财务、法律等领域,帮助收集相关信息并形成综合性的报告文本。 为了使 Agentic RAG 更加实用,在实际应用中通常还会涉及到以下几个方面的工作: 1. 定义明确的目标群体及其常见问题类型; 2. 设计合理的数据源接入方案确保获取高质量的信息资源; 3. 开发高效的算法实现快速而精确的结果匹配; 4. 测试和完善整个流程保证稳定可靠的用户体验。 通过这种方式,Agentic RAG 能够显著提升自动化问答服务的质量,特别是在面对那些涉及广泛背景知识和技术细节的情况下表现尤为突出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值