最近,Meta重磅发布了新一代AI模型Llama 3.3,号称用70B的参数量就能达到405B的性能,这波操作本该成为焦点。但眼尖的网友们却发现了一个更有趣的细节…
神秘消失的对手
中国的Qwen模型"被消失"了?!
这个发现直接让Reddit帖子获得了176个赞,成为最热评论,看来大家都发现了这个"此地无银三百两"的操作~
老哥(带着姜文式笑容)评论道:“As usual, Qwen comparison is conspicuously absent.”(老规矩,Qwen的对比数据又神秘消失了)
另一位网友更是直接点破:“I think it is because they don’t want to show any Chinese models being comparable.”(我觉得是因为他们不想展示中国模型的可比性)
这条评论获得了82个赞,看来大家都懂的都懂啊~
有趣的选择性对比
Meta选择性对比了这些对手:
-
Google的Gemini 1.5 Pro(谷歌大哥)
-
OpenAI的GPT-4o(OpenAI老祖宗)
-
亚马逊的Nova Pro(贝佐斯老板的新玩具)
CDN media
结果一位网友直接整活:“Meanwhile it’s compared to checks notes Amazon Nova Pro? What the fuck is Amazon Nova Pro?”(等下,对比Amazon Nova Pro?这玩意儿是啥啊?)🤣
真相大白:数据会说话
资深用户@DeProgrammer99做了一个详细对比,发现:
-
Llama 3.3 70B和Qwen 72B实力相当
-
在某些测试中两者交替领先
-
甚至Qwen的32B版本也能和Llama 3.3过过招
CDN media
实测反馈也很有意思:
-
一位用户表示:“Pretty disappointed with it as a Home Assistant LLM. It gets confused far more easily than Qwen 2.5 72b.”(作为家庭助手,它比Qwen 2.5 72b更容易混乱)
-
但也有网友强调在自己的测试中,Llama 3的工具使用和指令遵循方面始终优于Qwen
神转折:有人支持这种"选择性失明"?!
有意思的是,居然有网友支持这种做法:“I actually prefer it like this, we don’t want attention on Qwen. If the politicians get a whiff of air that Chinese models are cooking…”(我其实更喜欢这样,我们不想引起对Qwen的关注。如果政客们意识中国模型在崛起…)
技术角力:细节见真章
上下文之争也很精彩:
-
都说Llama有"sweet sweet 128k context"
-
但网友指出Qwen实际支持132k🤯
-
一位网友评论:“It is, but it is not so sweet”(是这样,但没那么香)
-
不过已有好心网友贡献了128k的gguf模型,可喜可贺
意外收获:倒逼创新?
一位网友的调侃引发深思:“This is how OpenAI creates intelligence too cheap to measure. By forcing people to build open source”
(这就是OpenAI如何创造"便宜到无法衡量的 AI ",通过逼大家做开源)😂
结语:开源江湖的暗潮涌动
这场看似普通的模型发布会,却意外揭示了AI领域的诸多有趣现象:
-
技术实力无法掩盖
-
商业策略各显神通
-
开源社区生机勃勃
最重要的是,在这场"选择性失明"的背后,我们看到了全球AI竞争的新格局。正如网友所说,有时候"看不见"的东西,才是最值得关注的。
“因为在AI的世界里,最迷人的永远是那些未被说出的真相。”
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。