42页深度解析!谷歌《智能体Agent》白皮书全方位解读

人类在处理复杂的模式识别任务时表现出色,但往往需要借助工具来辅助决策。例如,我们会查阅书籍、使用谷歌搜索或计算器来补充知识,从而得出更准确的结论。类似地,生成性人工智能模型也可以通过训练,学会使用工具来获取实时信息或为现实世界中的行动提供建议

比如,模型可以利用数据库检索工具,查看客户的购买历史,生成个性化的购物推荐。或者,基于用户的查询,模型可以自动进行多次API调用,代替用户回复电子邮件,甚至完成金融交易等操作。

要实现这些功能,模型不仅需要能够访问外部工具,还必须具备规划和执行任务的能力,并能够自主引导整个过程。将推理、逻辑推理与外部信息访问能力相结合,并与生成性人工智能模型相连接,便形成了“智能体”这一概念智能体是一种超越了生成性人工智能模型独立功能的程序,能够更加灵活、智能地应对各种复杂场景和任务需求.

谷歌发布的《智能体Agent》白皮书共42页,深入探讨了智能体的诸多方面。它从智能体的基本定义和特性出发,详细阐述了其在不同领域的应用场景和潜在价值。

在商业领域,智能体可以作为企业的虚拟助手,协助处理客户咨询、订单管理、市场分析等事务,提高工作效率,优化决策流程。在医疗领域,智能体可以辅助医生进行疾病诊断、治疗方案推荐、患者健康管理等工作,为患者提供更加精准、个性化的医疗服务。在教育领域,智能体可以根据学生的学习情况和特点,提供个性化的教学内容和辅导方案,助力学生更好地掌握知识和技能.

此外,白皮书还分析了智能体在技术实现上的关键挑战和解决方案。如何让智能体更精准地理解用户意图和需求,如何提高其与外部工具的交互效率和准确性,如何确保智能体在执行任务时的安全性和可靠性,都是需要重点解决的问题。为此,研究人员正在不断探索和优化智能体的算法架构、知识表示方式、学习机制等方面,以提升其整体性能和应用效果.

白皮书目录

总之,这份白皮书为我们全面了解智能体提供了宝贵的资料和深入的见解,揭示了智能体在未来人工智能发展中的重要地位和广阔前景。随着技术的不断进步和完善,智能体有望在更多领域发挥关键作用,为人类社会的发展带来更加深远的影响.

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值