自动驾驶端到端技术可以为具身智能机器人带来哪些启发

自动驾驶和机器人在技术、算法、系统架构、数据共享等多个方面都有紧密的关联和相互借鉴。两者之间的创新和发展往往相互促进,共同推动了智能系统技术的进步。比如在深度学习和强化学习方面,自动驾驶和机器人中都得到了广泛应用,两个领域在开发学习算法时往往会相互借鉴。而智能机器人在某些相对静态的应用场景中,可能更容易达到可用状态,因为它们的环境稳定,安全性要求相对较低,且有更多时间进行信息处理和推理。然而,这并不意味着机器人在所有应用中都更容易实现可用性。随着任务复杂度的增加,机器人依然面临技术挑战,尤其是在高精度和复杂操作任务中。因此,虽然总体来说,智能机器人可能更容易达到基本的可用状态,但具体情况还需视应用场景而定。

本文将针对已经较为成熟的自动驾驶开发技术为基点,说明智能机器人可以怎样从中得到一些启发做到更好的开发适配。

自动驾驶与智能机器人的应用交叉

自动驾驶中的决策策略可以通过强化学习来优化,而这些技术同样适用于机器人在动态环境中的操作。同时,两个领域都在研究如何将仿真环境中的学习成果迁移到现实世界中。自动驾驶和机器人在这方面面临着类似的挑战,因此技术上的突破往往会在两个领域中同时产生影响。当然,在系统架构上两者也是共同进步的。比如在分布式计算与实时性应用时,自动驾驶和机器人都需要实时处理大量数据,并进行复杂的决策。这推动了两个领域在分布式计算、边缘计算和实时系统架构方面的共同进步。此外,在两个领域都高度重视系统的安全性与鲁棒性。

例如,自动驾驶中的冗余系统设计和故障检测方法也在机器人领域中得到应用,反之亦然。在场景与数据的共享方面,两个领域之间也经常共享数据集和开源项目,这促进了技术的相互学习。例如,自动驾驶中的某些场景数据集也可用于训练和测试机器人,尤其是在复杂的室外环境中。由于场景相似性,自动驾驶与机器人的操作环境在某些情况下具有相似性,如工业环境、仓储管理、城市导航等。这些场景中的技术挑战和解决方案往往可以在两个领域中相互参考和应用。最后,自动驾驶技术可以应用于自动驾驶卡车或物流机器人中,而机器人技术可以应用于自动驾驶汽车的生产线自动化。这种行业应用的融合进一步推动了两个领域的共同发展。而在智能城市的概念中,自动驾驶和机器人往往也是相互配合的,例如自动驾驶的城市交通管理系统与城市服务机器人之间的协作。

自动驾驶与智能机器人的解决方案对比及应用案例

传统的自动驾驶技术方案很难解决机器人的问题,以感知能力为例,自动驾驶系统运行的道路环境最主要的元素是车辆、行人、车道等,在经典算法架构下以目标检测、车道线检测等任务的形式表达可以解决大部分问题。因此,自动驾驶的感知任务相对固定,且可以通过大量的训练数据和规则来处理特定的场景,如避开行人或跟随车道线。

而机器人可能产生互动的环境要素过于多样,例如家用机器人可能需要与数据线等特殊几何形态物体、流体等难以简单表征的元素交互。感知任务非常多样且难以预见。机器人需要处理的不仅仅是静态物体,还可能涉及到动态的、甚至是流体的元素。传统的感知算法难以应对这些复杂的场景,因为这些场景难以通过预定义的规则或特定任务模型来描述。

此外,自动驾驶与环境的互动主要集中在避障和路径规划上,这些任务可以通过经典算法和有限的传感器输入来实现。而机器人方面,需要与环境进行更为复杂的互动,例如操作物体、与人类互动、处理不同类型的材料等。这些互动需要机器人具备更加高级的感知和决策能力,而传统的自动驾驶方案在处理这些问题时力不从心。

传统的自动驾驶技术虽然在结构化和规则化的道路环境中表现优异,但在应对机器人所需的广泛、多样和动态的感知与控制任务时存在显著的局限性。数据驱动和AI方法,特别是端到端的学习框架,为解决这些问题提供了一个更为灵活和强大的工具。机器学习特别是深度学习的方法可以通过大规模数据的学习来自动提取特征,适应多样化的环境。这使得机器人能够在高度复杂和多变的场景中进行自我学习和调整,而不是依赖预定义的规则和手工编码的特征提取。因此,在机器人领域,基于AI的感知和控制方案更为适合,能够更好地应对复杂的互动场景。

以实例说明自动驾驶对智能机器人的设计启发

基于以上背景,自动驾驶端到端已经提供了一种可供参考、可量产的数据统计技术范式。那么智能机器人行业要如何应用好这个从自动驾驶衍生出来的技术范式呢?实际上,智能机器人行业可以通过应用自动驾驶衍生出来的端到端数据统计技术范式,提升感知、决策、学习和交互能力。这一转变将帮助机器人更好地适应复杂、多变的环境,同时提高开发效率和产品的市场竞争力。

以下是如何有效地将这一技术范式应用到智能机器人领域的一些思考:

1. 数据收集与标注

智能机器人可以很好的借鉴自动驾驶的数据策略。自动驾驶的成功很大程度上依赖于庞大的数据集,包括行车视频、传感器数据以及详细的标签。这些数据支持模型的训练,使其能够应对多种驾驶场景。机器人行业可以采用类似的策略,收集来自不同场景的数据,例如家庭环境、公共场所等,并为关键的感知和互动任务进行详细标注。

同时,考虑到机器人应用场景的多样性,数据收集需要涵盖各种复杂的场景和物体,包括不同材质、形状、动态对象(如流体、灵活物体)等。利用模拟环境、真实世界的操作记录以及用户互动数据,可以构建多样化的数据集。

2. 深度推理与实时性平衡

自动驾驶汽车:由于环境的高度动态性,自动驾驶汽车的决策过程必须在毫秒级时间内完成,深度推理的空间相对有限,需要依赖高效的感知和控制算法。感知模型训练在端到端系统中发挥了重要作用。智能机器人可以借鉴这一点,使用在相关任务上预训练的模型,并通过迁移学习将其调整到特定的机器人任务上。这可以加速模型的开发并提高初始性能。

由于在自动驾驶中,端到端系统通常同时执行多个任务(如检测、跟踪、决策)。同样,机器人也可以通过多任务学习的方式来处理感知、导航、操作等多个任务,从而提高系统的整体效率和鲁棒性。智能机器人在静态环境下,可以利用更多时间进行深度推理,如路径规划、物体识别、任务分解等,从而提高操作效率。然而,在某些应用中(例如手术机器人、救援机器人),即使环境静态,仍然需要高精度和实时响应能力。借鉴自动驾驶经验,智能机器人可以着手开发更高效的计算平台、更灵敏的执行器来加速自动驾驶应用。

3. 在线学习与模型更新

自动驾驶系统中,车辆可以在行驶过程中不断收集新的数据并优化模型。机器人可以采取类似的策略,通过在线学习或增量学习方法,使系统能够在实际操作中持续学习和更新,从而不断提高对新场景和任务的适应能力。借助边缘计算,机器人可以在本地实时处理数据并做出反应,而通过云计算,则可以在更大范围内共享和整合数据,用于模型的全局更新。

4. 安全与可靠性

在一定程度上可以这样认为,智能机器人因为面对的环境更可控,且风险更低。这使得它们可以通过相对简单的技术手段达到可用状态。例如,在家居清扫机器人中,只需确保不会碰撞或跌落即可投入使用。而自动驾驶汽车由于其潜在的高速度和在公共道路上的操作,一旦出现失误可能导致严重的伤害或死亡,因此对安全性有极高的要求。系统必须具备高度的冗余、实时性、容错性以及严格的监管和测试标准。

在自动驾驶中,虚拟仿真环境被广泛用于测试和验证算法的安全性和可靠性。智能机器人也可以采用类似的仿真技术,模拟复杂的互动场景,进行系统的广泛测试,确保其在现实环境中的安全性和稳定性。

与自动驾驶类似,机器人系统需要通过冗余与多模态感知设计来提高可靠性。例如,使用多模态传感器(视觉、触觉、声学等)来提高感知的准确性,避免因单一传感器的失效或误判导致的系统故障。

5. 用户体验与人机交互

借鉴自动驾驶中用户反馈和驾驶员监控的数据,机器人也可以通过用户交互和反馈来优化其行为。例如,收集用户对机器人的操作反馈,调整其行为模型,以提高用户体验和交互的自然性。当然,机器人需要根据用户的需求和环境变化进行情境感知和个性化调整,这方面可以参考自动驾驶中对不同驾驶习惯的适应性调整。

6. 产业链与标准化

构建数据共享和技术标准:自动驾驶行业通过标准化和共享数据推动了技术的发展。机器人行业可以参考自动驾驶行业标准制定规则,通过制定行业标准、构建共享数据平台,推动端到端技术在整个行业中的广泛应用。

智能机器人更务实的落地路径是追求“限定范围下的通用性”

参考L4级无人驾驶发展的经验教训,通用机器人也应当从特定场景开始应用,逐渐拓展至更广泛的场景。这种策略借鉴了L4级无人驾驶发展的经验教训,强调从特定场景开始应用,再逐步拓展至更广泛的场景。这种方法不仅能够加速技术的实际应用,还能在逐步积累经验的过程中不断优化和完善系统。

以下是这一路径的几个关键点:

1. 聚焦特定场景

明确应用场景:与L4级自动驾驶首先聚焦在限定的城市区域或高速公路上类似,智能机器人可以先在高度可控的环境中应用,例如仓储物流、工业制造、家庭服务等。这些场景的特点是任务明确、环境相对稳定,有利于技术的快速迭代和优化。

降低复杂性:通过限定操作范围和任务类型,可以显著降低系统的复杂性。这种做法不仅能够简化感知、决策和控制的要求,还能更好地管理和预见潜在的风险。

2. 迭代优化与规模化

从垂直场景到横向扩展:在特定场景中,随着技术的成熟,可以逐步扩展到相似或相关的场景。例如,从仓库自动搬运机器人扩展到工厂内的物料运输,再到配送中心的自动分拣。通过这种逐步扩展的方式,可以不断积累经验和数据,为进一步的通用化打下基础。

用户反馈驱动优化:在有限场景下应用时,可以收集大量用户反馈和操作数据,用于迭代优化系统。随着技术的不断完善和用户体验的提升,机器人可以逐步适应更多复杂和多变的环境。

3. 灵活的系统架构

模块化设计:采用模块化设计的机器人系统,能够根据不同场景的需求进行灵活配置和扩展。例如,感知模块可以根据应用场景的不同选择不同的传感器,控制模块则可以适应不同的运动学要求。这种设计能够支持从特定应用向更广泛场景的平滑过渡。

可扩展的软件架构:为了支持从有限场景到广泛应用的扩展,软件架构需要具备高度的可扩展性。这包括支持新的任务模块、算法升级和跨场景的通用接口。

4. 经济效益与可行性

成本控制与商业模式:在特定场景中的应用可以通过规模效应和垂直整合来降低成本,同时也可以验证不同商业模式的可行性。成功的商业模式和低成本的解决方案将为机器人在更广泛的场景中应用铺平道路。

合作与生态系统:通过与行业伙伴、学术机构和开源社区的合作,可以加速技术开发和市场推广。共享数据、标准和技术平台,有助于构建一个有利于机器人技术普及的生态系统。

5. 逐步扩展通用性

动态适应能力:在扩展应用场景的过程中,机器人需要逐步增强其动态适应能力,能够处理更广泛和不确定的任务。这包括加强感知系统的多样性、提升决策系统的灵活性以及优化控制系统的响应速度。

逐步提升安全性和可靠性:随着应用场景的扩展,机器人系统的安全性和可靠性要求也会提高。在早期的有限场景中可以进行充分测试和验证,随着技术的成熟,可以逐步扩展到对安全性要求更高的场景。

端到端算法对智能机器人应用中如何做数据驱动

影子模式指的是机器人在执行真实任务时,系统的控制决策虽然已经生成,但并不真正执行,而是由人类或当前有效的控制逻辑来完成任务。与此同时,系统会记录下实际环境中的数据,并分析如果让影子系统执行任务可能会发生的结果。通过这种方式,可以在不影响实际操作的情况下,收集大量真实场景的数据,用于训练和验证模型。这种数据不仅包括感知信息,还包括机器人“预期”行为与实际行为的差异,从而帮助改进和优化算法。

众所周知,“影子模式”(Shadow Mode)来获取海量数据,已经在自动驾驶领域被证明是非常有价值的,通过影子模式可以在真实环境中低风险地收集数据、验证算法,并逐步优化系统。可以说,影子模式在自动驾驶数据搜集中起到了举足轻重的作用,特别在现在以端到端火遍整个自动驾驶系统开发的整个过程中,采用以类影子模式的方式实现数据搜集和有效处理是一个非常有必要的手段。

既然智能机器人更着重于端到端的模式驱动,是否可以通过影子模式获取海量数据的路径来打通整个数据采集驱动过程呢?

答案是肯定的,利用像自动驾驶影子模式一样的方式进行智能机器人数据搜集,确实可以成为智能机器人端到端模式驱动的一种有效途径。

首先,在影子模式的数据收集阶段,智能机器人应用场景多样,影子模式可以帮助收集在不同场景下的数据。这些数据包括智能家居机器人、工业机器人、医疗机器人等各种环境中的感知信息、操作日志和人机交互记录。除了感知数据,还可以通过影子模式记录用户的行为和反馈,例如用户如何纠正机器人的操作,或对机器人的某些行为做出的反应。这些数据对改善人机交互、增强系统智能性非常重要。

其次,在数据驱动的模型训练阶段,需要进行持续的模型优化。影子模式收集到机器人周边环境的数据可以持续用于智能机器人感知模型的训练和优化。通过将这些数据输入到深度学习模型中,可以不断提高机器人的感知、决策和控制能力,减少系统的误判和错误操作。在特定场景的微调阶段,在某些特定的应用场景中,影子模式还可以帮助识别并优化模型在这些场景中的表现。例如,在仓储环境中,可以利用影子模式识别机器人在复杂路径规划中的挑战,并通过数据微调来优化路径规划算法。

在部署与验证阶段,影子模式允许在机器人正式部署之前进行全面的验证和优化。在影子模式下,机器人可以在真实场景中运行,收集数据并验证模型的性能,同时避免潜在的风险。一旦影子系统的性能达到满意的水平,可以逐步过渡到实际操作中,从影子模式到真实模式的平滑过渡。同时,影子模式还可以用于A/B测试,通过对比不同算法或策略在相同环境下的表现,选择最优方案。同时,这也提供了一个持续监控系统性能的途径,确保机器人在不同应用场景中的表现达到预期。

在规模化与迭代阶段,随着影子模式在不同场景下的广泛应用,可以积累海量数据。这些数据不仅可以用来训练更强大的模型,还能支持跨场景的通用化发展。规模化的数据收集将是实现如上提到的“有限范围通用性”的关键一步。

通过影子模式,机器人系统可以在实际运行中不断迭代和进化。随着数据的不断积累和模型的持续优化,机器人可以逐步提升在更复杂场景中的表现,从而实现从特定场景向更广泛应用场景的扩展。

当然,从隐私/数据安全和硬件与计算资源的支持角度考虑,影子模式在智能机器人的应用中也存在一点挑战。其一,是在收集数据时,特别是在家庭或医疗场景中,必须确保用户隐私和数据安全。这需要在系统设计中考虑数据的匿名化、加密处理以及合规性要求。其次,影子模式需要大量的数据处理和存储能力,因此需要确保硬件和计算资源的支持。这包括高效的传感器数据采集系统、边缘计算设备,以及与云计算的有效结合。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值