人工智能如何改变医疗:从精准诊断到价值医疗

在当今快速发展的科技时代,人工智能(AI)正逐渐渗透到我们生活的方方面面,医疗领域也不例外。AI不仅有望彻底改变传统的医疗模式,还能为患者提供更加个性化、精准化的医疗服务。今天,我们就来聊聊AI在医疗领域的应用,以及它如何推动精准医疗和价值医疗的发展。

01.当前医疗的痛点:成本高、效率低

在传统的医疗模式中,我们常常面临一些难以解决的问题。例如,英国国家卫生服务(NHS)每年在实验室检测上花费数十亿英镑,其中高达80%的检测是由于检测周期过长而被成对请求的。医生们为了不等待第一次检测的结果,往往会提前订购第二次检测,即使这些检测在某些情况下可能是不必要的。这种模式不仅浪费了大量资源,还增加了患者的经济负担。

此外,随着医疗技术的不断发展,数据量也在呈爆炸式增长。从2003年到2016年,每年发表的科学论文数量翻了一番,而且每5年翻倍的时间还在缩短。面对如此海量的信息,即使是专业的科学家和临床医生也难以跟上最新的研究进展。这种信息过载的问题,使得医疗决策变得更加困难。

02.AI在医疗中的现状:有潜力,但不够成熟

人工智能在医疗领域的应用已经取得了一些令人瞩目的成果。例如,深度学习技术在图像识别和分类任务中表现出色,能够快速准确地识别医学影像中的病变。然而,这些技术大多还停留在分类和识别的层面,缺乏对复杂疾病的深入理解和解释能力。

目前,AI在医疗中的应用还面临一些挑战。首先,AI模型通常被视为“黑箱”,其决策过程难以理解,这使得医生和患者对其结果的信任度较低。其次,AI技术的开发和验证缺乏统一的标准和协议,导致许多AI应用难以在临床中广泛推广。

03.基于模型的AI:让医疗决策更透明

为了克服这些挑战,科学家们提出了一种新的AI方法——基于模型的人工智能(Model-Driven AI)。这种方法结合了神经网络和符号计算的优点,通过构建可解释的模型来提高AI的透明度和可靠性。符号计算类似于传统的计算器,能够理解数字和符号的概念,从而执行更复杂的逻辑推理任务。这种结合不仅提高了AI的准确性,还使其能够提供更直观的解释,帮助医生更好地理解诊断结果。

例如,在儿科癌症护理中,通过基于模型的AI技术,可以实现对患者健康状态的实时监测,减少不必要的医院访问,减轻患者和家长的负担。此外,这种技术还可以通过分析患者的血液检测结果,提供个性化的风险评估,帮助医生更早地发现潜在的健康问题。

04.因果诊断:从症状匹配到根源分析

传统的医疗诊断大多依赖于症状模式匹配,这种方法虽然简单,但往往忽略了疾病的复杂性和多样性。为了更准确地诊断疾病,科学家们提出了因果诊断(Causal Diagnostics)的概念。因果诊断通过分析疾病的因果关系,而不是仅仅依赖于症状的统计模式,从而能够更深入地理解疾病的本质。

例如,Watson是IBM开发的一种基于统计推理的人工智能系统,它在电视节目《危险边缘》中取得了巨大成功,但在医疗领域的应用却并不理想。这是因为Watson的方法很难转化为实际的医疗决策。相反,基于模型的AI和因果诊断方法能够提供更可靠的解决方案,通过分析疾病的根本原因,为患者提供更精准的治疗方案。

05.精准医疗的机遇:个性化、价值化的未来

精准医疗(Precision Medicine)是未来医疗的发展方向,它强调根据患者的个体特征提供个性化的医疗服务。通过结合AI技术和因果诊断,我们可以实现从人群模式匹配到个体化诊断的转变,从而为患者提供更精准、更有效的治疗。

例如,在血液检测结果的风险评估中,通过开发创新的评分系统,我们可以更准确地识别健康和不健康的患者群体。这种评分系统不仅能够分析个体的检测结果,还能随着时间的推移进行自我学习和调整,为每个患者提供个性化的健康评估。

此外,AI技术还可以通过分析医学文献和患者数据,提供更全面的预诊断和疾病进展模型。这种方法不仅提高了诊断的准确性,还为医生提供了更丰富的决策支持信息。

06.AI与医疗的未来

人工智能在医疗领域的应用前景广阔,但要实现其真正的潜力,还需要克服许多挑战。通过结合基于模型的AI和因果诊断,我们可以提高医疗决策的透明度和可靠性,为患者提供更精准、更个性化的医疗服务。

未来,随着AI技术的不断发展和医疗领域的深度融合,我们有理由相信,医疗模式将从传统的经验医学向精准医学和价值医疗转变。这不仅将提高医疗效率,降低医疗成本,还将为患者带来更优质的医疗服务体验。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值