2025年3月,一家名为Decibel Bio的植物生物技术初创公司从隐身模式中走出,凭借其创新的作物表观遗传学平台获得了1200万美元的融资。这轮投资由比尔·盖茨创立的Breakthrough Energy Ventures、Future Ventures以及农业巨头拜耳和先正达共同参与。而这家公司的技术亮点令人惊叹:不改变植物DNA就能优化作物特性。
表观遗传学:植物世界的"软件更新"
想象一下,如果植物的DNA是"固件",那么表观遗传学就是控制这些基因何时、如何表达的"操作软件"。Decibel Bio的创新之处在于开发了一种可以读取和重写这一"软件"的技术平台。
该公司创始人兼CEO Travis Bayer解释道:“表观遗传学是植物的软件,控制着基因在何时何地表达。重新编程表观基因组是超越基因组学和基因编辑的新前沿,为作物改良开辟了全新可能。”
更实用的说法是:他们可以在生长季节中给植物下达新指令,比如提高产量或增强抗旱能力。农民现在有可能"升级"作物性能,实时"下载"新特性,以适应每个生长季节的特定天气条件。
观遗传学通过调节基因的生化模式发挥作用 图片来源:Decibel Bio
喷一喷,作物变“高级”
Decibel Bio的技术实现方式既简单又优雅:通过喷洒处理或种子处理来改写植物的表观遗传状态。
在去年加州的一次测试中,经过处理的番茄在外观上与普通番茄别无二致,但收获后它们仍然新鲜可口的时间延长了两周。这不是通过改变植物DNA实现的,而是通过调整植物自身的表观遗传学。
该公司的技术可以带来多种实用效益:
-
在旱季来临前激活抗旱基因,帮助作物保持水分
-
在预期暴风雨前,调整作物茎秆强度以抵抗倒伏
-
在理想条件下,微调生长特性以提高产量
-
让农作物更好地抵抗疾病,减少化肥使用
-
延长收获后的保质期
实时适应气候变化
这一技术的一大亮点是能够帮助农民实时应对不可预测的天气变化。
Breakthrough Energy Ventures的Carmichael Roberts指出:“从突发干旱到极端热浪,农民持续面临越来越多不可预测的紧急环境挑战,这些挑战影响他们的作物产量,最终影响他们的生计。CRISPR和传统育种技术根本无法跟上日益严峻的生长条件,而Decibel提供了一种新工具来构建更稳定、更适应性强的食品系统。”
该公司已经准备在今年夏天于美国中西部进行约50次试验,测试其技术如何帮助玉米提高抗旱性、抗病性或增强产量。在像爱荷华州这样干旱日益严重但每年并不稳定发生的地区,抗旱处理可以帮助农民实时适应。
技术优势与市场前景
Decibel Bio的表观遗传重编程平台具有几个显著优势:
-
快速响应:植物生理变化仅需一周左右时间
-
灵活应用:可以随时给农作物"升级",而不受限于最初种植的品种
-
保留遗传多样性:不引入新的遗传物质,不做不可逆的改变
-
开发速度快:新型处理方法可在数月内开发完成
-
监管路径清晰:可能被归类为"生物刺激剂",而非转基因生物
Future Ventures联合创始人Steve Jurvetson评论道:“将植物特性与物理种子分离创造了巨大的新机会。Decibel的技术将让我们能够在田间升级作物,这在以前是不可能的。”
据该公司透露,这一技术最早可能在明年投入商业应用,取决于试点结果和监管审批。
随着气候变化的加剧,这种技术可能成为帮助食品系统适应的关键工具。正如Bayer所说:“我们知道从气候模型和大量数据中,我们正在经历更多极端天气,这直接影响着农民的日常生活。我们的主要动机是,让我们尝试给农民一些工具来适应这个新现实。”
Decibel Bio计划利用此轮融资扩大其平台合作伙伴关系,并加速产品开发。该公司从另一家名为Sound Agriculture的公司分拆而来,其创始团队在合成生物学、表观基因组学、植物生理学和工程学方面拥有专业知识。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。