学习计划|一个月学会Python,零基础入门数据分析

本文提供了一个为期一个月的Python学习计划,覆盖Python基础、数理统计、SQL、数据可视化及实战等内容,适合数据分析新手快速入门。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在数据分析领域,python是一个绕不开的知识和工具,如果不会用python就很难说自己会数据分析,但是最近很多想要入门数据分析的小白经常问我,Python怎么入门?Python虽然被称作是“最简洁的语言”,但是它终究还是一门编程语言,想要入门还需要掌握一些基础知识和技巧。

为此,我先列上一个学习计划,在接下来的一个月里会根据学习计划,整理、梳理出Python的入门学习知识,对于那些想要学习Python的同学们提供一个参考:

1.初始python基础

2.python的数理统计理论

3.sql的学习

4.python的语法基础

5.用python实现数据可视化

6.数据分析实战

在这里插入图片描述

一、初识python基础

在这一章里,主要是介绍我们为什么要用python进行数据分析,以及python需要掌握的一些基础知识,我们能够用python做什么?在第一章里,让大家在感性的认知上首先了解一下这个分析工具,主要涵盖的内容包括python的下载与环境安装、数据类型介绍和内置数据结构介绍:

python的下载和安装环境:难点主要是在环境的安装上,很多小白往往一腔热血但是面对环境安装的时候就泄了气,因为我会用Anaconda为例进行环境的安装,同时我建议初学者不要下载具有IDE功能的集成开发环境,比如Eclipse插件等。

数据类型:python的数据类型比较简单,基本上就可以分为两大类——数值和字符串。

  • 数值:数值是python最基础的数据类型,也是我们赋值给变量时最常用的形式,主要包括整型、布尔型等。
  • 字符串:也就是文本数据,在python中一般用引号来定义,可以通过python进行拼接和重叠,实现文本数据的处理;
  • 索引和切片:索引是有序列每个子元素在序列的位置,切片就是对序列的部分截取。

数据结构:python的数据结构可以分为四种,列表、元组、字典、集合。

  • 列表:用中括号表示,可以容纳任何对象元素,包括字符串,而且每个元素都可以变化;
  • 元组:其实就是一个固定的列表,初始化元素的值是绝对不能变化的;
  • 字典:可以理解为现实的字典,通过查找拼音(键)就能找到这个读音的所有字(数值);中
  • 集合:数学上的概念,每个集合中的元素是无序的,不可重复的对象;

在这里插入图片描述

二、python的数理统计理论

数据分析的目的是从数据里找规律,因此想要掌握python必须要学习一些基础的数理理论,这是成为一个数据分析师必备的能力。对于python来说,其涉及的数理统计学基础主要由算法、统计学、概率论等,在这一章里我会进行简单的介绍:

  • 矩阵理论-----线性代数
  • 导数、偏导、凹凸函数-----微积分
  • 正态分布、偏态、峰度-----概率论
  • 量化分析、推断-----统计学
  • 描述统计和推断统计-----数理统计

在这里插入图片描述

三、SQL的学习

sql是python的基础,如果你已经掌握了SQL,那么这一章你就可以直接跳过,那么你就要好好学习这部分的内容,因为sql是入门python的关键基础,同时它也是每个数据分析师必备的技能,主要目的是用sql来进行增删改查等操作,对数据进行筛选。

在这里插入图片描述

四、python的语法基础

这一部分主要是对python的基础语法进行讲解,这一部分是学习python的关键,只要能够熟悉掌握各种语法和语句,基本上就学会了python,当然这一部分只是进行简单的入门,更加进阶的语法暂时不会涉及。

  • Python语句的缩进
  • Python的多行语句
  • Python引号
  • Python标识符
  • Python关键字
  • Python变量
  • 变量声明并赋值示例

在这里插入图片描述

五、用python实现数据可视化

在这一章里,我会简单讲解一下如何利用python的matplotlib进行数据可视化的操作,python中有着非常优秀的可视化库,进行可视化制作也是数据分析必备的能力之一,在这一部分中我会使用几种不同数据图表来讲解基于matplotlib的数据可视化。

  • Bar(柱状图/条形图)
  • Bar3D(3D 柱状图)
  • Boxplot(箱形图)
  • EffectScatter(带有涟漪特效动画的散点图)
  • Funnel(漏斗图)
  • Gauge(仪表盘)
  • Geo(地理坐标系)
  • Graph(关系图)
  • HeatMap(热力图)
  • Kline(K线图)
  • Line(折线/面积图)
  • Line3D(3D 折线图)
  • Liquid(水球图)
  • Map(地图)
  • Parallel(平行坐标系)
  • Pie(饼图)
  • Polar(极坐标系)
  • Radar(雷达图)
  • Sankey(桑基图)
  • Scatter(散点图)
  • Scatter3D(3D 散点图)
  • ThemeRiver(主题河流图)
  • WordCloud(词云图)

在这里插入图片描述

六、数据分析实战

到了最后一章,你应该已经基本掌握了python的操作,最后一步就是要进行分析项目的实战,在这一部分中我会以几个实际中遇到的数据分析项目为例进行实操,包括爬虫+分析、业务指标分析等等,为大家拓宽数据分析的思路,早日成为数据分析师!

后言

虽然我的标题是一个月入门python,但是python的掌握需要在大量的实践中不断磨合纠错,才能得到实质性的提高,因为我的学习计划只是希望带给完全小白的新手一点思路和指导,让他们能够少走一些弯路。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。在这里插入图片描述

二、Python必备开发工具

在这里插入图片描述

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

六、Python练习题

检查学习结果。
在这里插入图片描述

七、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值