数据可视化在各领域至关重要,凭借DeepSeek技术与HTML图表,可以一键生成可视化图表,这一组合大幅降低技术门槛,无论专业人士还是新手都能从中获益。DeepSeek+HTML是如何协同创造出精美的可视化图表?下面一起学习。
接下来我使用一组超市零售数据,借助DeepSeek来生成HTML图表,以往我们要做一个可视化图表需要先进行数据分析,然后选择合适的图表类型进行可视化,现在通通不要,只需要将案例数据发送给DeepSeek,然后输入提示词即可。
首先研究月度的销售额趋势,将数据上传到DeepSeek,然后输入下面的提示词。
将超市零售数据按月汇总销售额,生成月度销售额趋势图折线图,并生成html图表,可视化效果要求美观,html代码确保可运行。
DeepSeek很快就给我们输出结果,返回HTML代码,点击底部的运行HTML,可以预览生成的图表效果。
如下即生成的折线图。
接着研究不同产品的销售额情况,并要求生成柱形图,输入下面的提示词。
按产品类别统计总销售额,并按产品类别统计的总销售额数据,生成不同产品类别销售额柱状图,并生成html图表,可视化效果要求美观,html代码确保可运行。
即可得到不同产品的销售额柱形图,由图可以做清晰地销售额对比。
接下来生成一个散点图,并且筛选出单价低于50但总销售额排名前10的产品,当然,这都可以交给DeepSeek来完成,输入下面的提示词。
计算每个产品的平均单价(销售额/销售量),筛选出单价低于50但总销售额排名前10的产品,列出产品名称、销售量、销售额,并生成散点图,并生成html图表,可视化效果要求美观,html代码确保可运行。
得到特定数据的散点图,不仅对数据做了处理,还展示出了散点图。
最后,做出高价值产品与低价值产品的销售额占比饼图,输入下面的提示词。
将产品分为高价(电器、家具)和低价(食品、百货、水果、服装),计算两类总销售额占比,生成饼图,并生成html图表,可视化效果要求美观,html代码确保可运行。
即可生成下面的图表,并且,该图表还支持动态交互。
上面是单一的图表生成,在实际应用场景中我们希望可以生成一个数据看板DashBoard,这样方便数据管理和决策,我将上面的提示词进行整合和优化,输入下面的提示词即可一键生成数据看板。
请分析上传的数据生成数据看板,以HTML形式输出,要求如下:
1.数据洞察:提取关键数据指标,使用合适的可视化图表
2.可视化规范:采用现代化UI设计风格,配色协调专业,分为多个卡片式区块,每块区域中有一个图表,图表类型选择需符合数据类型特点
3.整体布局:整体背景色为浅蓝色渐变,内容区域使用白色卡片配合阴影效果,页面宽度自适应,支持响应式设计
4.指标卡片区:包含三到四个指标卡片,每行排列,间距均匀,卡片左侧指标名称和数值
5.输出要求:生成完整可运行的HTML代码,兼容主流浏览器,响应式布局适配不同设备
6.增强要求:包含交互式图表元素,添加关键指标摘要面板,支持数据下钻分析功能
下面就是通过提示词修改,得到的数据看板,比起单一的图表类型,这类数据看板的数据内容更加丰富,数据信息也更加直观,如果拿这样的看板去做数据汇报的话,肯定会惊艳所有人。
当然,HTML支持的图表类型多种多样,以下是基本的图表类型,在我们实际应用中可以根据业务分析需要适当地选择合适的图表类型,以达到最好的分析效果。
以上,详细介绍DeepSeek+HTML一键生成可视化图表的方法,这种方法打破传统数据可视化的阻碍,节省了大量时间精力,学会这种方法,将助力于各行业数据决策,挖掘更多数据价值。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。