1.华为工资
作为我最佩服的两家企业,华为和比亚迪,比亚迪一直是工厂员工比较多,会拉低平均工资。
但是华为的薪资,在业内真的是没得说,苦是真的苦,但对于技术人也真的是给得多。
我自己入职第一份工作就是在华为做人力外包,19年作为华为云大使还去深圳总部深度参观过2天。
同时我也有几个朋友,一直在华为工作,所以对华为研发的工资、文化什么的还算比较了解。
这两天,刚好看到网上流传的一份华为正式员工,不同级别的工资,稍微打听了一下,有些许差异,但大方向是准的。
华为这些年,真的是改变了很多家庭的命运,苦是苦,但对于农村出身的孩子,不怕苦,就拍挣不到钱呀。
特别是大环境比较难的情况下,华为其实一直也没有开启大规模的裁员,甚至还在逆势招聘,难得可贵。
2.职场
华为不同的级别收入差距巨大,所以在职场想要拿到高的薪资,还是需要尽量多去往上走。
不同的职位,其实某种程度上就决定了完全不同的薪酬体系。
我在职场从小菜鸟到管理百人的副总,几乎任职过所有研发岗位,现在创业也有实习生和合伙人。
可以从我的角度和大家聊聊,一般什么样的人比较容易升职。
其实所有领导考察下属手段都比较类似,刚开始会给你安排一些日常琐碎但难度不会很大的工作。
如果你能够顺利的接下这些活儿,而且能把这些琐碎的事情干得还比较漂亮,就会让人印象深刻。
然后领导慢慢会给你上强度,偶尔安排一个比较重要的活,看你是否能够稳定的拿下。
然后不断给你上强度,直到你真的处理不过来,这样就能知道你的能力上限了,能力越强的人,后面得到的机会越多,升职加薪越快。
我就是这样一点点的排上来的,你要给领导一种你很靠谱的感觉,如果能够成为他的后背(可以依靠)那就更好了。
3.关键点
其实日常工作,同事之间是很难特别明显的区分开,所以在职场一定要注意关键点。
如果能在职场打造几个标杆事件,让同事、领导对你有一个很深的印象,那么后面有升职的机会时,你肯定也是被优先考虑的那个人。
有那么一句话:
就是大家都觉得你应该要升职了,那么大概率你就会在后期升职,这其实也是一种能力、威望的肯定。
大家为什么要这样觉得呢?
那肯定是你的为人、能力能得到大家都尊重,不然大家凭什么要尊重你呢?
所以,“凭什么”,这个问题值得要好好想想。
这里举几个关键点的例子:
比如程序员的话,在生产出现事故的时候,能够紧急站出来,还把这个事情很好的处理了。
比如,现在公司要启动一个新项目,需要调研一些新的技术或者内容,你上去帮公司搞定了。
这都是职场的关键点和里程碑,可以当作你的业绩去上报的,也是大家对你有印象的记忆点。
这些事情总结起来,就是两样,主动+有实力,主动代表了态度,实力代表了能力。
没事的时候,大家都一样,看不出啥,有事的时候,人和人的区别就此体现,差距也就慢慢出来了。
态度,只要你想,那不会有什么问题,实力,那就需要自己日积月累,努力精进,当然,只要持之以恒,坚持努力,时间长了,自然能看到结果。
能力和薪资短期可能不匹配,但长期来看一定会匹配上的,各位加油!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。