大模型的分类——生成式大模型和判别式大模型联系与区别

明白模型的类型,才能明白模型的应用

在学习机器学习的过程中,生成式模型和判别式模型是两个经典类型的模型,弄明白两者之间的联系与区别是一个非常重要的事情,也会加深对大模型的理解。

那么什么是生成模型和判别模型呢?

生成式模型和判别式模型的区别与联系

生成式模型和判别式模型是两种不同的机器学习类型,它们之间具有不同的目标和应用场景,很重要的一点是不论生成式模型还是判别式模型,都是基于监督学习的机器学习算法。

🌟 重大消息全新上线的人工智能聊天机器人小程序正式与大家见面啦!🌟

你是否曾在深夜思考人生,却无人倾诉?你是否在忙碌的工作间隙,渴望轻松一刻?或者你是否需要一个24小时随时在线的助手为你提供专业建议?现在,这一切都有了解决方案!🤖✨

💬 智能对话,贴心陪伴

我们的AI聊天机器人可以与你畅谈人生理想、分享趣味知识,还能解答你生活中的各种小疑惑。无论何时何地,它都是你最贴心的聆听者和伴侣。

生成式模型

生成式模型是通过学习数据的联合概率分布P(X,Y),从而能够生成新的数据样本,它不仅能够进行分类,还能生成与训练数据相似的样本,这也是AIGC的基础。

生成式模型的目标是根据数据的联合概率分布,能够生成新的,近似的数据样本。

工作原理:

  1. 学习数据分布:通过训练数据学习输入特征X和标签Y的联合概率分布P(X,Y)。

  2. 生成新样本:通过条件概率P(X|Y)或P(Y|X),生成新的数据样本。

常见的生成式模型类型:

  • 朴素贝叶斯:基于贝叶斯定理,假设特征之间独立。

  • 隐马尔可夫模型:用于时间序列数据建模

  • 生成对抗网络(GANs):由生成器和判别器组成,通过对抗训练生成逼真的数据

  • 变分自编码器:通过编码和解码器学习数据的变量分布,生成新样本

应用场景:

图像生成:生成逼真的图像(GANs)

数据增强:生成新样本用于增强训练数据

自然语言生成:生成文本,对话等(VAE)

判别式模型

判别式模型是通过学习数据的条件概率分布P(Y|X),直接进行分类或回归任务。它侧重于学习特征与标签之间的决策边界。

目标:

判别式模型主要用于分类和回归,通过找到特征和标签之间的映射关系进行分类。

工作原理:

  1. 学习决策边界:通过训练数据,直接学习输入特征X和标签Y之间的条件概率分布P(Y|X)

  2. 预测标签:给定新的输入特征X,直接预测标签Y

场景判别式类型:

逻辑回归:用于二分类问题,学习线性决策边界

支撑向量机:通过最大化分类间隔,找到最优决策边界

神经网络:通过多个隐藏层学习复杂的特征映射关系

随机森林:通过集成多个决策树进行分类或回归

应用场景:

分类任务:如图像分类,文本分类

回归任务:如房价预测,股票价格预测

序列标注:如命名体识别,语音识别

主要区别

  1. 目标:

    生成式模型:学习数据的联合概率分布,能够生成新的样本

    判别式模型:学习数据的条件概率分布,直接进行分类或回归

2. 模型复杂度

生成式模型:通常更复杂,因为它需要建模数据的联合分布  

判别式模型:通常较简单,只需要建模特征与标签之间的条件概率  

3. 训练数据要求

生成式模型:需要大量数据以准确学习联合分布  

判别式模型:通常对数据量要求较少,但对数据质量要求较高  
  1. 应用场景

    生成式模型:用于生成数据,数据增强,图像生产等

    判别式模型:用于分类,回归,序列标注等任务

总之,判别式模型和生成式模型是机器学习中的两种经典类型,其在模型目标,复杂度,训练数据和应用场景上都有明显的区别。

生成式模型用于生成新的数据和学习数据的联合分布,而判别式模型则侧重于分类和回归任务,通过学习特征与标签之间的条件概率分布。

在应用方面,应根据具体的任务和需求,选择合适的模型类型是最好的应用方式。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

03-19
### IEEE 802.1Q VLAN Tagging Protocol Standard IEEE 802.1Q 是支持虚拟局域网(VLAN)的标准协议之一,通常被称为 Dot1q。该标准定义了一种用于以太网帧的 VLAN 标记系统以及交换机和桥接器处理这些标记帧的操作流程[^2]。 #### 协议结构概述 IEEE 802.1Q 的核心功能在于通过在以太网数据帧中插入特定字段来实现 VLAN 标签的功能。这种标签使得网络设备能够识别哪些流量属于哪个 VLAN,并据此执行转发决策。具体来说: - **Tag Header**: 在原始以太网帧头部增加了一个额外的 4 字节字段作为 VLAN 标签头。这四个字节包含了以下部分: - **Priority Code Point (PCP)**: 使用 3 比特表示优先级级别,范围从 0 到 7,主要用于 QoS 控制。 - **Canonical Format Indicator (CFI)**: 这是一个单比特位,在传统以太网环境中设置为零。 - **VLAN Identifier (VID)**: 使用 12 比特标识具体的 VLAN ID,理论上可以支持多达 4096 个不同的 VLAN(编号从 0 至 4095),其中某些特殊值保留给内部用途或管理目的。 #### 数据包处理机制 当一个带有 VLAN tag 的数据包进入支持 IEEE 802.1Q 的交换机时,它会依据此标签决定如何路由或者过滤该数据流。如果目标端口不属于同一 VLAN,则不会传输至其他无关联的物理接口上;反之亦然——只有相同 VLAN 成员之间才允许互相通信除非经过路由器跨网段访问[^1]。 此外,为了简化管理和配置过程并增强互操作性,还引入了一些辅助性的子协议和服务组件比如 GARP(通用属性注册协议)。GARP 可帮助分发有关 VLAN 成员资格的信息到各个连接节点以便动态调整其行为模式而无需频繁手动干预[^3]。 以下是创建带 VLAN TAG 的 Python 示例代码片段展示如何模拟构建这样的 Ethernet Frame: ```python from scapy.all import Ether, Dot1Q, IP, sendp def create_vlan_packet(src_mac="00:aa:bb:cc:dd:ee", dst_mac="ff:ff:ff:ff:ff:ff", vlan_id=100, src_ip="192.168.1.1", dst_ip="192.168.1.2"): ether = Ether(src=src_mac, dst=dst_mac) dot1q = Dot1Q(vlan=vlan_id) ip_layer = IP(src=src_ip, dst=dst_ip) packet = ether / dot1q / ip_layer return packet packet = create_vlan_packet() sendp(packet, iface="eth0") # Replace 'eth0' with your network interface name. ``` 上述脚本利用 Scapy 库生成包含指定源地址、目的地址及所属 VLAN 编号的数据报文并通过选定的网卡发送出去测试实际效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值