利用LlamaIndex和本地PDF文档,轻松打造知识图谱GraphRAG

利用LlamaIndex框架和本地PDF文档,构建知识图谱索引,增强语言模型的理解和回答能力。

检索增强生成(RAG)技术通过引入外部知识源,增强了大型语言模型的回答准确性和上下文契合度。尽管RAG在处理复杂异构信息时可能会忽略实体间的结构和联系,例如,向量数据库可能错误地将“员工”与“雇主”关联得更紧密,而非“信息”。

知识图谱的引入有效解决了这一局限。它采用节点和边的三元组结构,如“雇主 — 提交 — 索赔”,清晰地表达了实体间的关系。这种结构化的方法让知识图谱在处理复杂数据搜索时更为精确和高效。

1 技术实现

1.1 安装依赖项

!pip install -q pypdf   !pip install -q python-dotenv   !pip install -q pyvis   !pip install -q transformers einops accelerate langchain bitsandbytes sentence_transformers langchain-community langchain-core   !pip install -q llama-index   !pip install -q llama-index-llms-huggingface   !pip install -q llama-index-embeddings-langchain   !pip install -q llama-index-embeddings-huggingface   
  • LlamaIndex:一个简单、灵活的数据框架,用于将自定义数据源连接到LLMs

  • SimpleDirectoryReader:将本地文件数据加载到LlamaIndex的最简单方式

  • KnowledgeGraphIndex:从非结构化文本自动构建知识图谱

  • SimpleGraphStore:简单的图存储索引

  • PyVis:一个Python库,用于可视化和构建图网络

1.2 启用诊断日志

日志可提供代码执行情况的宝贵信息。

import os, logging, sys      logging.basicConfig(stream=sys.stdout, level=logging.INFO)   logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))   

1.3 连接Huggingface API

请更新至你的Hugging Face推理API端点。

from huggingface_hub import login      os.environ["HF_KEY"] = "Your Hugging Face access token goes here"   login(token=os.environ.get('HF_KEY'),add_to_git_credential=True)   

1.4 加载PDF文档

  • Innovate BC Innovator Skills Initiative

  • BC Arts Council Application Assistance

from llama_index.core import SimpleDirectoryReader      documents = SimpleDirectoryReader(input_dir="/content/", required_exts=".pdf").load_data()   

2 构建知识图谱索引

2.1 使用HuggingFace创建本地嵌入

HuggingFaceEmbeddings 类是 LangChain 库的一部分,它封装了 Hugging Face 提供的句子转换器模型,用于创建文本嵌入。这个类支持调用 Hugging Face 平台上所有可用的句子嵌入模型,以执行包括语义搜索、文档聚类和问答等任务。在本次练习中,采用了 Hugging Face 的 multi-qa-MiniLM-L6-cos-v1 句子转换器模型。

from llama_index.embeddings.huggingface import HuggingFaceEmbedding      EMBEDDING_MODEL_NAME = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1"      embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL_NAME, embed_batch_size=10)   

2.2 从ServiceContext迁移到Settings

LlamaIndex v0.10.0 版本推出了全新的全局 Settings 对象,用以取代之前的 ServiceContext 配置方式。

这个 Settings 对象充当着全局配置的角色,采用了按需实例化的机制。例如,LLM 或嵌入模型等属性,只有在相关底层模块真正需要时,才会进行加载。这样的设计使得资源的使用更加高效,响应更为迅速。

from llama_index.core import Settings      Settings.embed_model = embed_model   Settings.chunk_size = 256   Settings.chunk_overlap = 50   

文档在索引时会被划分成有重叠的小块,这个过程称为“分块”。通常块的大小设为1024,重叠部分为20。鉴于我们的文档较短,我们调整块大小为256,并设置重叠为50,以优化处理。

2.3 定义自定义提示

from llama_index.core import PromptTemplate      system_prompt = """<|SYSTEM|># You are an AI-enabled admin assistant.   Your goal is to answer questions accurately using only the context provided.   """      # 这将包装 llama-index 内部的默认提示   query_wrapper_prompt = PromptTemplate("<|USER|>{query_str}<|ASSISTANT|>")      LLM_MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"   

2.4 设置LLM

import torch   from llama_index.llms.huggingface import HuggingFaceLLM      llm = HuggingFaceLLM(       context_window=4096,       max_new_tokens=512,       generate_kwargs={"temperature": 0.1, "do_sample": False},       system_prompt=system_prompt,       query_wrapper_prompt=query_wrapper_prompt,       tokenizer_name=LLM_MODEL_NAME,       model_name=LLM_MODEL_NAME,       device_map="auto",       # 如果使用CUDA以减少内存使用,请取消注释此行       model_kwargs={"torch_dtype": torch.float16 , "load_in_8bit":True}   )      Settings.llm = llm   

2.5 构建知识图谱索引

from llama_index.core.storage.storage_context import StorageContext   from llama_index.core import KnowledgeGraphIndex   from llama_index.core.graph_stores import SimpleGraphStore      # 设置存储上下文   graph_store = SimpleGraphStore()   storage_context = StorageContext.from_defaults(graph_store=graph_store)      index = KnowledgeGraphIndex.from_documents(documents=documents,                                              max_triplets_per_chunk=3,                                              storage_context=storage_context,                                              embed_model=embed_model,                                              include_embeddings=True)   
  • max_triplets_per_chunk:指的是每个文本块中能够提取的最大三元组数量。降低这个数值可以提升处理效率,因为它减少了需要处理的三元组数量。

  • include_embeddings:用于决定索引中是否包含嵌入项。默认设置为False,因为生成嵌入项在计算上可能相当耗费资源。

2.6 可视化知识图谱

from pyvis.network import Network   g = index.get_networkx_graph()   net = Network(notebook=True, cdn_resources="in_line", directed=True)   net.from_nx(g)   net.save_graph("rag_graph.html")   from IPython.display import HTML, display   HTML(filename="rag_graph.html")   

2.7 查询

query_engine = index.as_query_engine(llm=llm, similarity_top_k=5)      done = False   while not done:    print("*"*30)    question = input("Enter your question: ")    response = query_engine.query(question)    print(response)    done = input("End the chat? (y/n): ") == "y"   

3 结语

传统的向量型RAG和图RAG在数据存储与展示上各有侧重。向量数据库擅长通过相似性来比较对象,利用数值来衡量对象间的距离。而知识图谱则专注于揭示复杂的联系和对象间的依赖性,通过节点和边进行深入的语义分析和逻辑推理。这两种方法各自适用于不同的应用场景。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值