提升RAG系统的回答质量:做好上下文管理

在本篇文章中,我们将深入探讨上下文管理这一关键环节。上下文管理对于确保生成的回答与用户问题高度相关且一致性至关重要。通过良好的上下文管理,RAG系统能够理解并保留用户在多轮对话或复杂查询中的意图,从而生成更连贯和准确的回答。

我们先看几个上下文管理的有效方法,以及方法所使用的算法和它们带来的改进效果,最后介绍一篇关于上下文管理的RAG优化论文。

基于序列模型的上下文编码

方法概述

序列模型(如RNN、LSTM、GRU)在处理时间序列数据方面表现出色,尤其擅长捕捉和编码上下文信息。在RAG系统中,序列模型能够在多轮对话或多步推理过程中,记忆并利用用户之前的查询和生成的答案,从而维持上下文的一致性。

算法与实现
  • LSTM(长短期记忆网络):LSTM通过引入遗忘门、输入门和输出门,有效捕捉长时间序列的依赖关系。它能够将之前对话轮次的信息保存在其状态中,并在生成新的答案时参考这些信息。举例来说,在技术支持场景中,LSTM可以记住用户在初次查询时提到的问题背景,并在随后的对话中持续参考这一背景,确保回答的一致性和相关性。

  • GRU(门控循环单元):GRU与LSTM类似,但结构更简单,计算效率更高。它通过更新门和重置门来控制信息流动,适用于上下文信息的编码和管理。例如,在智能客服系统中,GRU能够快速响应用户的连续提问,确保上下文的连贯性,而不至于因为对话长度增加而失去原有的焦点。

提升效果

使用序列模型后,RAG系统在多轮对话中能够更好地记住和利用用户的输入,生成的回答更贴近用户的真实意图。这对于复杂的多轮交互系统如智能客服或技术支持尤为关键,能够显著提升用户体验。

使用增量式上下文更新机制

方法概述

增量式上下文更新机制是一种在每次生成新回答后及时更新上下文的方法,确保系统在接下来的交互中使用最新的信息。这一机制可以使RAG系统在多轮对话中始终基于最新的上下文生成回答,从而提高系统的灵活性和应变能力。

算法与实现
  • Contextual Updating Algorithm:这一算法分析每次生成的内容,并将其合并到现有的上下文中,确保系统能够使用最新的上下文信息进行回答。举例来说,在电子商务推荐系统中,该算法可以根据用户的最新选择,动态调整推荐内容,确保推荐的产品始终与用户的当前需求匹配。

  • Sliding Window Technique:滑动窗口技术用于控制上下文的长度,避免上下文过长而影响处理效率。通过动态调整窗口大小,RAG系统能够始终聚焦于最相关的上下文信息。例如,在在线教育系统中,该技术可以确保系统在每一轮对话中只保留与当前问题最相关的学习内容,从而提高学习建议的针对性和有效性。

提升效果

通过增量式更新机制,RAG系统能够更好地保持对用户问题的敏感度,并适应需求的变化。在实时对话系统中,这种方法尤为有效,能够显著提升用户体验和回答的准确性。

上下文聚合与分解

方法概述

在处理复杂的上下文信息时,信息量可能过大或过于复杂,直接使用可能导致信息冗余或失真。上下文聚合与分解方法通过对复杂信息进行处理,使系统能够更好地利用关键信息,生成精准的回答。

算法与实现
  • Context Aggregation:该算法通过聚类算法或语义相似度计算,将相关的上下文信息进行合并,生成一个精简的上下文表示供生成模型使用。例如,在法律咨询系统中,多个相关的法律条款可以通过聚合算法合并为一个统一的参考依据,从而简化系统的推理过程,提高回答的准确性。

  • Context Decomposition:上下文分解算法将复杂的上下文拆分为多个独立部分,每个部分单独供生成模型参考。这种方法特别适用于多主题对话,例如在医学问答系统中,不同症状的描述可以被分解为独立的上下文部分,系统可以分别处理每个症状,从而提供更有针对性的医疗建议。

提升效果

通过上下文聚合与分解,RAG系统能够更高效地处理复杂的信息,生成更加精准和相关的内容。这种方法在需要处理多主题或信息密集型对话时,特别有助于提升系统的回答质量。

结论

上下文管理是RAG系统回答质量的关键因素之一。通过序列模型的上下文编码、增量式上下文更新机制以及上下文聚合与分解等方法,RAG系统能够在复杂多变的用户需求下,生成更加准确、连贯和相关的答案。这些方法从不同角度提升了RAG系统的上下文管理能力,使其在各类复杂应用场景中表现更为优异。

优化论文详解

RAPTOR

论文地址:https://arxiv.org/pdf/2401.18059

**递归抽象处理与树形组织检索的创新方法,**从长文档中快速而准确地提取关键信息是RAG一个极具挑战性的问题。随着文档内容的复杂性和层级结构的增加,传统的信息检索方法往往难以同时兼顾全局视角与细节捕捉。针对这一挑战,RAPTOR(Recursive Abstractive Processing for Tree-Organized Retrieval)提出了一种全新的递归嵌入、聚类与摘要方法,构建自底向上的树形结构,用于在不同抽象层次上整合信息,从而提升检索效率和准确性。今天将深入探讨RAPTOR的核心思想、技术实现以及应用前景。

一、背景与挑战

在长文档中,信息通常以层级结构存在,不同章节、段落之间可能涵盖多个子主题。传统的检索方法,如关键词匹配或简单的语义相似度计算,往往难以有效处理这样复杂的结构。这不仅导致信息丢失,还可能产生不准确的检索结果。RAPTOR通过递归处理和树形结构组织信息,试图在保留全局语义的同时,深入挖掘文本中的细节内容,从而提高信息检索的全面性和精确度。

二、RAPTOR方法的核心机制

1. 树形结构的构建

RAPTOR的核心是从文档中构建一个多层次的树形结构。具体而言,文档首先被划分为长度约为100个单词的短文本块。这些文本块通过SBERT编码器(Sentence-BERT)进行嵌入处理,形成树形结构的叶节点。

聚类是树形结构构建中的关键步骤。RAPTOR采用了一种基于高斯混合模型(GMM)的柔性聚类方法,允许文本块属于多个聚类。这种方法特别适合处理包含多个主题的复杂文本块。在聚类完成后,RAPTOR使用语言模型对每个聚类进行摘要,形成更高层次的节点,并递归重复这一过程,直到树形结构达到最顶层。

这种自底向上的树形结构不仅可以保持文本的全局语义,还能够有效捕捉不同层次的语义联系。对于长文档来说,树形结构提供了从整体到局部、从概括到细节的多层次视角,使信息检索变得更加灵活和高效。

2. 柔性聚类与降维

RAPTOR的聚类方法采用了柔性聚类技术,即允许一个文本块属于多个聚类。这种方法极大地提高了模型在处理复杂文本时的灵活性。在实现上,RAPTOR结合了UMAP(统一流形近似与投影)进行降维处理,以便更有效地执行高维向量的聚类操作。

RAPTOR还采用BIC(贝叶斯信息准则)来自动确定最佳的聚类数量。这种基于数据驱动的优化方法确保了聚类的质量,同时避免了过度拟合或欠拟合的问题。

3. 递归摘要与信息检索

在树形结构构建完成后,RAPTOR对每个聚类生成的节点进行递归摘要。这些摘要是使用GPT-3.5-turbo等先进的语言模型生成的,以确保摘要内容既简洁又语义连贯。通过这种递归摘要,RAPTOR能够将大量的信息浓缩成简洁的表达形式,同时保留关键信息。

在信息检索阶段,RAPTOR 提出了两种核心方法:

  • 树遍历方法:该方法通过逐层检索树形结构中的节点,逐步缩小检索范围,从而集中聚焦于最相关的信息。这种方法确保了从宏观到微观的逐步筛选,有助于捕捉信息的层次感和语义关联性。

  • 树折叠方法:不同于逐层检索,树折叠方法则通过考量所有层级的节点,直接定位并锁定最相关的节点。这种方式能够快速提取核心信息,适用于需要立即获取最相关内容的场景。

无论是树遍历还是树折叠方法,RAPTOR 都能有效地从树形结构中精准提取用户关心的信息。两者的结合使用,可以根据不同需求灵活调整检索策略,从而提升系统的响应速度和准确性。

在这里插入图片描述

三、实际应用与优势

RAPTOR 的创新方法在多个领域中展现出巨大的应用潜力,尤其是在需要从长文档中提取复杂信息的场景中。以下是一些具体的应用案例:

  1. 法律文件分析:法律文档通常包含大量的法律条文、案例分析和论点论据。RAPTOR 可以通过树形结构将这些信息组织起来,使得检索特定法律问题或条款时更加高效。

  2. 学术研究:在科研领域,研究论文通常包含大量的实验数据和理论分析。RAPTOR 可以帮助研究人员快速提取相关信息,进行跨文献的综合分析。

  3. 医疗文献整理:医学文献往往包含多层次的信息,如病症描述、治疗方案、临床试验结果等。RAPTOR 能够将这些信息按层级组织起来,帮助医生快速找到关键信息,从而提高诊疗效率。

四、RAPTOR的创新与未来展望

RAPTOR 的树形结构方法为信息检索提供了一种全新的思路。它不仅解决了传统方法在处理长文档时面临的挑战,还通过递归嵌入、聚类与摘要实现了高效的信息整合。这种自底向上的树形结构具有很强的适应性和扩展性,未来可以结合更多的自然语言处理技术,进一步提高信息检索的质量和速度。

此外,RAPTOR 在上下文管理方面的潜力也不容忽视。通过引入递归结构和层级组织,RAPTOR 为上下文管理提供了一个新的框架。这种框架不仅可以提升RAG系统的回答质量,还能够更好地适应用户的动态需求,提供更为精准和个性化的服务。

五、总结

RAPTOR 通过递归抽象处理与树形组织检索的创新方法,为长文档信息检索提供了一种强有力的解决方案。其独特的树形结构设计和柔性聚类方法,使得信息检索的准确性和全面性得到了显著提升。随着RAPTOR的进一步发展,它在信息检索、上下文管理等方面的应用前景将更加广阔,为各类复杂文档的处理带来新的可能性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值