AI多模态融合技术架构图

一、多模态融合技术架构图

img

这张AI多模态融合技术架构图展示了从多模态数据处理到知识应用的完整流程,具体如下:

  1. 数据输入与预处理
  • 多模态数据:包含文本、音频、语音、视频、图片。

  • 预处理中心:通过语音识别、媒体处理、图像识别、OCR 识别,将原始数据转化为非结构化数据。

  1. 知识建模定义

定义知识建模的基础元素,包括本体、实体、属性和关系,为后续知识抽取提供框架。

  1. 知识抽取
  • 结构化数据(表格、数据库):通过本地配置、知识映射、融合消歧抽取。

  • 半结构化数据(JSON、XML、HTML):利用人工规则或包装器归纳抽取。

  • 非结构化数据

  • 借助自然语言处理(关键词提取、语义解析等)生成词性标注数据集和知识图谱数据集。

  • 通过基于规则、模型(含深度学习模型)的方法抽取知识。

  1. 模型开发

对数据集进行模型训练、验证与部署,提升知识处理能力。

  1. 知识管理
  • 知识融合:通过实体链接、实体对齐、知识合并,整合多源知识。

  • 知识计算:运用规则推理、关系预测、知识更新,挖掘知识价值。

  • 知识存储:采用 RDF、Neo4j 等方式存储结构化知识,便于检索与应用。

  1. 应用层

知识最终应用于聊天机器人、智能客服、数据分析、情绪感知、智能推荐、可视化图表、深度思考等场景,实现多模态 AI 的实际价值。

该架构通过整合多模态数据处理、知识抽取、管理与应用,构建了一个从数据到智能应用的完整闭环,体现了多模态 AI 在知识驱动下的复杂处理能力。

**二、**多模态融合应用架构图

img

这张 多模态融合应用架构图 呈现了一个分层式多模态融合应用架构,各层级功能与逻辑关系如下:

  1. 基础层

提供底层硬件支撑,包括 CPU(通用计算)、NPU(神经网络计算)、GPU(图形与并行计算)、SSD(数据存储)和内存,为上层模型与应用提供计算和存储资源。

  1. 模型层
  • 大语言模型:如 Llama、Qwen、DeepSeek 等,是核心语言处理模型。

  • 多模态模型:包括视觉 - 语言模型、智能文档理解、语音 - 语言模型、多模态检测与分割,实现跨模态数据(如图像、语音、文本)的融合处理。

  1. 智能体层
  • 技术模块:RAG(检索增强生成)、Prompt engineering(提示工程)、Fine tuning(模型微调)、Chain - of - thought(思维链),优化模型交互与生成效果。

  • 数据处理:涵盖数据抓取、清洗、向量化、访问控制及数据广场,确保数据质量与高效利用。

  1. 能力层

提供通用处理能力,包括文字、音频、图像、视频处理,代码生成、行为分析、知识图谱构建,支撑上层应用的多样化需求。

  1. 应用层

针对不同行业提供具体场景应用:

  • 工业:工艺优化、品质检测、智能配方等。

  • 农业:智能耕种、病虫预防、灾害预警等。

  • 商业:需求预测、精准投放、智能客服等。

  • 政务:违规检测、办证审核、智能政务等。

  1. 用户层

服务于企业级用户、消费大众、政府机构、小商家、事业单位等多样化用户群体,实现多模态技术在不同领域的落地应用。

该架构通过底层硬件、模型、智能体、能力层的层层支撑,将多模态融合技术应用于工业、农业、商业、政务等场景,最终服务于各类用户,形成从技术到应用的完整闭环。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值