“
内容深化与重构类
PROMPT 1
-
中文:深入挖掘已有文献中的潜在假设,探讨其对研究结果解释力的影响。
English: Delve into the underlying assumptions within existing literature, exploring their implications on the explanatory power of research findings.
-
中文:对比不同理论框架下的研究结果,分析差异原因,提出综合视角。
English: Compare research outcomes across different theoretical frameworks, analyzing reasons for discrepancies and proposing an integrated perspective.
-
中文:对关键变量进行多维度分析,揭示其在不同情境下的作用机制。
English: Conduct multi-dimensional analyses on key variables, revealing their mechanisms of action across various contexts.
-
中文:扩展研究的时间跨度或地域范围,以验证结论的稳定性和普适性。
English: Extend the temporal or geographical scope of the study to validate the stability and generalizability of conclusions.
-
中文:通过案例研究或实证研究,深化对理论模型的理解与应用。
English: Enhance understanding and application of theoretical models through case studies or empirical research.
-
中文:重构研究问题,引入新的变量或维度,以探索未被充分研究的领域。
English: Reframe research questions, introducing new variables or dimensions to explore understudied areas.
-
中文:利用元分析方法,综合评估已有研究的结论一致性及影响因素。
English: Utilize meta-analysis to comprehensively evaluate the consistency and influencing factors of conclusions from existing studies.
-
中文:结合跨学科视角,将不同领域的研究成果融合,形成新的理论见解。
English: Integrate research findings from different disciplines through an interdisciplinary lens, fostering novel theoretical insights.
-
中文:对研究结果进行反向思考,探索其可能的反向影响或意外后果。
English: Engage in counterfactual thinking about research outcomes, exploring potential reverse effects or unintended consequences.
-
中文:对文献中的模糊或矛盾之处进行深入剖析,提出新的解释或假设。
English: Conduct in-depth analyses of ambiguities or contradictions in the literature, proposing novel explanations or hypotheses.
“
批判性思维与原创性提升类
PROMPT 1
-
中文:批判性评估已有研究的假设与前提,探讨其潜在偏见或局限性。
English: Critically evaluate the assumptions and premises of existing research, exploring potential biases or limitations.
-
中文:挑战主流观点,提出基于实证的反对意见或新视角。
English: Challenge mainstream viewpoints, presenting empirical counterarguments or novel perspectives.
-
中文:分析文献中的理论空白或研究缺口,明确未来研究方向的原创性贡献。
English: Analyze theoretical gaps or research voids in the literature, identifying original contributions for future research directions.
-
中文:对研究结果进行深度解读,揭示其背后的社会、文化或经济因素。
English: Provide a nuanced interpretation of research findings, revealing underlying social, cultural, or economic factors.
-
中文:通过对比不同研究结论,评估其一致性与差异性,提出综合见解。
English: Compare and contrast research conclusions, assessing their consistency and differences, and proposing integrated insights.
-
中文:质疑传统理论框架的适用性,提出替代性解释或模型。
English: Question the applicability of traditional theoretical frameworks, proposing alternative explanations or models.
-
中文:强调原创性思考的重要性,鼓励在已有基础上进行创新性拓展。
English: Emphasize the significance of original thinking, encouraging innovative extensions based on existing knowledge.
-
中文:分析文献中的方法论缺陷,提出改进建议以提升研究质量。
English: Analyze methodological flaws in the literature, proposing improvements to enhance research quality.
-
中文:探讨研究结果对现实世界的实际意义,评估其应用价值与社会影响。
English: Explore the practical implications of research findings for the real world, assessing their application value and societal impacts.
-
中文:鼓励跨学科对话,融合不同领域的知识,促进理论创新与实践应用。
English: Encourage interdisciplinary dialogue, integrating knowledge from diverse fields to foster theoretical innovation and practical applications.
“
表达优化与可读性提升类
PROMPT 1
-
中文:精简冗长段落,使用简洁明了的语句提升文章流畅度。
English: Streamline lengthy paragraphs, employing concise and clear sentences to enhance readability and flow.
-
中文:优化标题与摘要,确保它们准确概括文章核心内容和贡献。
English: Refine titles and abstracts to ensure they accurately summarize the core content and contributions of the article.
-
中文:采用逻辑清晰的段落结构,便于读者跟随作者的论证思路。
English: Employ a logical paragraph structure to facilitate readers’ understanding of the author’s argumentation.
-
中文:适当使用图表和插图,直观展示数据或复杂概念。
English: Utilize appropriate charts and illustrations to visually present data or complex concepts.
-
中文:避免专业术语的过度堆砌,确保非专业人士也能理解文章大意。
English: Avoid excessive jargon and ensure the article is comprehensible to non-specialists.
-
中文:增强句子间的衔接与连贯,使用过渡词或短语提升文章的连贯性。
English: Strengthen sentence cohesion and coherence, using transitional words or phrases to enhance the article’s flow.
-
中文:调整文章风格,根据读者群体调整语言正式程度与语气。
English: Adapt the writing style, adjusting the level of formality and tone based on the target audience.
-
中文:检查并修正语法、拼写错误,确保文章的学术严谨性。
English: Proofread for grammar and spelling errors, ensuring academic rigor throughout the article.
-
中文:合理安排引用,平衡直接引用与间接引用的比例,避免过度依赖某一文献。
English: Strategically place citations, balancing direct and indirect quotations to avoid overreliance on any single source.
-
中文:在结论部分简明扼要地总结研究发现,并提出具体建议或未来研究方向。
English: Concisely summarize research findings in the conclusion, offering specific recommendations or directions for future research.
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。