随着科技的发展,医学领域也在不断探索新的疗法和技术以改善患者诊疗。最近,空间医学(Spatial Medicine)作为一个新兴领域引起了广泛关注。
2024年10月26日,美国最知名的医生科学家Eric Topol博士在其博客中,以“The Dawn of Spatial Medicine”为题,详细阐述了空间医学的基本特征,并探讨其首次在临床应用中的突破,特别是在治疗严重药物反应–中毒性表皮坏死松解症(TEN)方面获得的令人震惊的疗效。
本文仅为抛砖引玉,简要介绍这一方面,希望能够为致力于提高疾病诊疗技术的医生科学家提供一个新的思路和解决方案。
空间医学的基本信息
空间医学是指利用空间组学技术在细胞或组织层面上进行疾病诊断和治疗。这一领域结合了生物信息学、影像学和机器学习等多种科技,通过对细胞及其组分进行精确的空间定位和功能分析,揭示细胞间的相互作用和疾病的微观机制。
(空间多组学。图源:Ref 1)
空间组学技术,尤其是空间转录组学和深度可视化蛋白质组学(DVP),为研究者提供了在单细胞水平上探索细胞状态和细胞间通信的新工具。这些技术通过分析细胞内各种生物大分子的空间分布和浓度变化,帮助科学家们更好地理解健康和疾病状态下的生物过程。
(深度可视化蛋白质组学原理。图源:Ref 1)
临床应用的突破
最近,Max Planck生物化学研究所的Thierry Nordmann和Matthias Mann等国际合作团队在_Nature_杂志上发表的一篇开创性研究,标志着空间医学从研究工具向治疗应用的转变。
研究团队通过深度可视化蛋白质组学技术(DVP),在中毒性表皮坏死松解症(TEN)患者的皮肤活检样本中进行了详细的单细胞蛋白质分析。
▼ 在机器学习的帮助下进行的角质形成细胞和免疫细胞的分割
(深度可视化蛋白质组学原理。图源:Ref 1)
▼ DVP 单细胞蛋白质组学的应用。
(深度可视化蛋白质组学原理。图源:Ref 1)
通过对比健康对照组和其他皮肤病变(如药物反应性皮疹和系统性症状的药物反应)患者的数据,研究人员发现中毒性表皮坏死松解症 (toxic epidermal necrolysis, TEN)患者的角质形成细胞和免疫细胞在类型1和2干扰素信号通路上有显著的活性增强,并激活了JAK/STAT信号通路。
这一发现为TEN的治疗提供了新的靶点。
进一步的实验中,研究人员在细胞培养和两种不同的小鼠模型中测试了JAK抑制剂,结果显示该药物可以有效抑制炎症过程和减轻疾病的严重程度。
更为重要的是,他们将这一研究成果应用于临床,成功治愈了7名TEN患者。这些患者在使用JAK抑制剂后48小时内症状显著改善,最终完全康复,未见明显副作用。
未来展望
空间智能的定义是理解、可视化和与时空中的三维世界互动的能力。尽管生成式人工智能呈指数级增长,但缺乏空间智能被认为是阻碍其发展的一大障碍。最近,由李飞飞领导的一家新创业公司World Labs筹集了超过 2.3 亿美元的资金,用于开发能够理解三维物理世界并与之互动的人工智能系统【2】。
实际上,空间医学的突破不仅为罕见且危险的皮肤病提供了治疗可能,更为各种疾病的精准治疗开辟了新道路。未来,这项技术有望在癌症、神经退行性疾病以及传染病等多个领域实现个性化治疗方案的开发。
随着人工智能技术的进一步发展,空间医学有可能通过构建更高分辨率的三维生物地图,更精确地模拟疾病进程和治疗响应,从而为未来的医疗健康提供更为深入的见解。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。