近年来,随着医疗数据的爆炸性增长和深度学习技术的飞速发展,多模态人工智能(AI)在医学领域的应用日益受到关注。本文系统地回顾了2018年至2024年间发表的432篇关于基于深度学习的医学多模态人工智能应用的文献。文章深入探讨了多模态人工智能在医学领域的应用现状、架构方法、融合策略以及常见应用领域,并对该领域的技术和实践挑战进行了批判性评估。
文章首先介绍了医疗保健领域的快速变化,这一变化受到数据驱动的患者诊疗和决策方法的推动。新兴技术如数字病理学、生物传感器和下一代测序技术为临床医生提供了新的见解。这些不同模态产生的数据通常是互补的,每种模态都为患者的状况提供了独特的信息。随着数据量的增加,选择最佳治疗方案变得日益复杂,可能需要更加数据驱动的方法来选择治疗方案。传统的多模态信息整合方法是多学科团队,但随着数据量和多样性的增加,这种方法的可扩展性有限。人工智能技术的发展为整合多模态信息提供了新的可能性,尽管大多数研究集中在单一模态应用上,但一些研究者已经强调了多模态人工智能系统的潜力。
本文第二部分详细讨论了多模态人工智能模型的开发,包括模型架构、模态融合策略和处理缺失数据的方法。研究显示,大多数研究优先考虑开发有效的模态融合方法,而不是设计新的编码器架构。这是因为多模态数据集通常比单一模态数据集小,通过利用在大型单一模态数据集上预训练的编码器,并在可用的多模态数据上进行微调,研究人员就可以在相对数据较少的情况下实现稳健的性能。模态融合策略主要分为三种:早期融合(在特征编码之前融合)、中间融合(在特征编码之后、最终预测层之前融合)和后期融合(在最终预测之后融合)。中间融合是最常用的方法,其中特征向量拼接是最常见的技术。后期融合则更容易处理缺失数据,但可能限制模型的表达能力。早期融合则面临数据需要处于相同“空间”的挑战。
第三部分探讨了多模态AI模型的临床应用,发现在不同的器官系统中,多模态模型的开发存在显著差异。文章根据器官系统(神经系统、呼吸系统、生殖系统等)和医学任务(诊断、预后评估、治疗等)对研究进行了分类。诊断是主要关注点,而生存预测是第二常见的任务。文章还强调了公共数据集在多模态人工智能研究中的重要性,61%的模型开发使用了公共数据集,如癌症基因组图谱和阿尔茨海默病神经影像学倡议。
文章还深入探讨了多模态人工智能模型开发中面临的挑战,包括跨部门协调、异构数据特征、数据集不完整等。跨部门协调的困难源于不同医学部门在数据存储、检索和处理方面的差异。异构数据特征则需要针对不同模态设计不同的人工智能模型架构,增加了模型设计的复杂性。数据集不完整则会降低模型的训练效果,并可能引入人群选择偏差。文章还讨论了多模态人工智能模型的临床应用前景,包括监管审批和可解释性等。
综上所述,这篇综述全面而深入地探讨了医学多模态人工智能的现状、挑战和未来发展方向,为研究人员和临床医生提供了宝贵的参考信息。它不仅总结了现有研究成果,也指出了该领域需要进一步努力的方向,为推动多模态人工智能在医学领域的应用提供了重要的指导意义。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。