本篇从基座模型选择、模型整体架构、数据设计、训练微调四个角度总结垂直领域大模型微调经验。
本篇将现有垂类大模型微调已公布的实践经验做一个全面的总结,大部分经验实测可推广,大家在自己实践过程中可以进行适当参考。
下面是一个快捷目录,其中数据设计和训练微调是重点。
-
基座模型选择
-
模型整体架构
-
数据设计
-
训练微调
基座模型选择
1. 医学类大模型微调怎么选择大模型
推荐BLOOMZ模型
BLOOMZ 模型系列使用了PILE语料库进行训练,该语料库包含各种医学文本,包括PubMed Central 和 PubMed Abstracts等。BLOOMZ模型的医学知识体系比较丰富。
模型整体架构
-
不要指望一个单个垂直领域的LLM就可以满足所有需求,合理的做法可能是实时更新的知识库+微调的医疗LLM ,如 ChatLaw (https://github.com/PKU-YuanGroup/ChatLaw)
-
超大参数模型(至少百亿) 即使被量化其能力依然能保持的较好。
数据设计
-
在LLM时代,需要牢记 数据质量 > 数量 这个真理,如:[Less is More! 上交清源 && 里海 | 利用200条数据微调模型,怒超MiniGPT-4!],超大规模的SFT数据会让下游任务LLM减弱或者失去ICL、CoT等能力
-
为防止灾难性遗忘,在算力充足情况下推荐使用医疗数据和通用语料数据进行训练,这样模型既可以有医学上的训练学习,也可以保持通用能力(如指令遵循)
-
大量数据进行二次预训练需要配比各类型其他数据:
(1) 语言模型训练完成后,参数各个区域负责部分已经确定,如果大量增加某类在预训练时没有的知识,会造成参数的大幅度变化,造成整个语言模型能力损失;
(2) 进行大规模数据的二次预训练,需要添加5-10倍原始预训练中的数据,并打混后一起训练。
4.训练数据要严格控制噪音:
(1) 预训练数据中如果出现少量连续的噪音数据,比如连续重复单词、非单词序列等,都可能造成特定维度的调整,从而使得模型整体PPL大幅度波动;
(2) 有监督微调指令中如果有大量与原有大语言模型不匹配的指令片段,也可能造成模型调整特定维度,从而使得模型整体性能大幅度下降。
-
大模型混合多种能力数据微调时呈现:高资源冲突,低资源增益,所以混合不同数据进行微调需要一定的工程技巧,翻译总结一下就是:低资源但高质量,并结合不同领域需求进行配比。
-
对于静态数据集,在多轮训练中多次迭代可能效果不佳。会导致过拟合,使训练结果恶化。
-
对于静态数据集,想要让 LLM 强化成「全能选手」,在所有基线任务中都表现优异是不可能完成的。想要解决这个问题需要多样化的数据源,或者使用 LoRA 以外的技术。
训练微调
-
全流程的LLM训练包括:预训练、监督微调、奖励模型、强化学习,多数情况下监督微调即可满足自身需求。
-
对于垂类模型,更应该关注PT的过程,而不是采集千万百万的SFT数据做训练,一般建议是 大规模预训练+小规模监督微调=超强的LLM模型
-
指令微调阶段不能够进行过多轮次训练:
(1) 针对少量数据进行多个epoch的训练,可能会造成语言关键区域变化,从而导致整个模型失效;
(2) 为了特定任务提升的指令微调,为了保证模型语言能力关键区不被大幅度调整,需要添加通用指令微调数据或者预训练数据。
-
通常来说,使用lora的效果不如full-tuning(如LoRA results in 4-6% lower performance compared to full fine-tuning )
-
7B系列模型请优先采用全参数微调方式(条件不满足就P-tuning,动的参数越多效果通常会更好),13B及以上参数模型可使用LoRA,QLoRA等方法。
-
如果要结合 LoRA,确保它在所有层上应用,而不仅仅是 Key 和 Value 矩阵中,这样才能最大限度地提升模型的性能。
-
虽然 LLM 训练(或者说在 GPU 上训练出的所有模型)有着不可避免的随机性,但多轮训练的结果仍非常一致。
-
如果受 GPU 内存的限制,QLoRA 提供了一种高性价比的折衷方案。它以运行时间增长 39% 的代价,节省了 33% 的内存。
-
在微调 LLM 时,优化器的选择不是影响结果的主要因素。无论是 AdamW、具有调度器 scheduler 的 SGD ,还是具有 scheduler 的 AdamW,对结果的影响都微乎其微。
-
虽然 Adam 经常被认为是需要大量内存的优化器,因为它为每个模型参数引入了两个新参数,但这并不会显著影响 LLM 的峰值内存需求。这是因为大部分内存将被分配用于大型矩阵的乘法,而不是用来保留额外的参数。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。