大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是本期觉得比较有意思的论文:
1、打破垄断!Photon让AI大模型训练不再受制于数据中心
2、AI也能从"错误"中学习写代码了
1、打破垄断!Photon让AI大模型训练不再受制于数据中心
在当前AI领域,训练大语言模型(LLM)几乎是科技巨头的专利,因为这需要庞大的数据中心和高带宽通信。但最近,研究人员开发的Photon系统可能会改变这一现状,它首次实现了在低带宽环境下的联邦训练方案,让分散在世界各地的GPU也能协同训练大模型。
Photon的核心创新在于它独特的联邦学习策略:它允许每个参与节点先进行本地训练,然后才进行模型同步。这种方式不仅将通信开销降低了64到512倍,而且训练速度反而比传统方法快了35%。更令人惊喜的是,使用Photon训练的7B参数模型,其性能甚至超过了在数据中心集中训练的模型。
在实践中,Photon采用了一个大胆的训练策略:使用小批量的数据配合极高的学习率。这种看似冒险的组合在联邦学习框架下却异常稳定,使得模型收敛速度比此前的方法快了一倍。目前,Photon已经成功支持了1811个实验,并促成了6篇研究论文的发表。
这项突破性的工作为AI民主化开辟了新的可能:它让分布在全球各地的研究者和开发者也能参与到大模型的训练中来,不再受制于大型数据中心。这意味着未来的AI发展可能会更加开放和多元化,让更多创新者有机会参与其中。
论文标题:Photon: Federated LLM Pre-Training
论文链接:https://arxiv.org/abs/2411.02908
2、AI也能从"错误"中学习写代码了
在编程学习中,从错误中吸取教训是提高水平的关键。但对于AI来说,这个看似简单的学习过程却是一个巨大的挑战。最近,研究人员提出了一种新方法RLEF(基于执行反馈的强化学习),让AI终于也能像人类程序员一样,通过运行结果的反馈来不断改进代码。
RLEF的工作方式非常巧妙:它让AI像参加编程竞赛一样反复尝试解决同一个问题。每次AI写出代码后,系统都会立即执行这段代码并返回测试结果。如果代码有错误,AI会根据错误信息和测试结果进行修改;如果测试通过,就完成任务。这个过程就像有一位经验丰富的导师在旁边指导,让AI能够从每次尝试中学习。
实验结果令人振奋:在竞争性编程任务上,采用RLEF训练的AI模型(不论是8B还是70B参数规模)都创造了新的记录。更令人惊喜的是,它生成正确代码所需的尝试次数比传统方法减少了90%。换句话说,AI不仅写出了更好的代码,而且效率也大大提高。
这项突破为AI辅助编程带来了新的可能。传统的AI编程助手往往需要多次重新生成代码才能得到正确结果,而经过RLEF训练的模型则能像经验丰富的程序员一样,从错误中学习并快速改进。这不仅让AI编程更加高效,也让其行为方式更接近人类程序员的学习过程。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。