数据要素市场化配置需要在市场经济条件下,围绕数据“供得出、流得动、用得好、保安全”。但数据要素的流通面临供需信息不对称、标准缺失、安全及定价问题,这些问题限制了流通效率,影响了数字经济的发展。
01 数据要素流通的困局
数据要素的流通依赖于场景和载体,如数据开放、共享、交易、产品化以及供需匹配等,而这些流通形式的有效运作又以数据流通制度、隐私保护、确权、质量评估和定价等为基础。同时,这些制度和定价机制的建立也需要实际的流通场景和案例来验证和完善。因此,数据要素流通的实现是一个双向互动的过程,场景和载体与制度之间相互依存,互为条件,形成了一种**“鸡与蛋”的循环依赖关系和困局**。
其实,在“鸡与蛋”形成闭环循环依赖关系之前的时间节点,或从更高维度看,一定是知道先有鸡或先有蛋。
02 业务数据化:实数映射
业务数据化将现实世界社会活动和商业活动的关键性事件和动作,以数据形式采集、记录和映射到数字世界。随着数据技术的发展,数据采集和存储的颗粒度和细粒度会越来越细,会逐渐形成全时空、全场景、全流程的原始数据、标签画像和数字孪生世界。
从第一个数据采集并存储后,数字世界就完成了从0-1的转化,实现了现实世界到数字世界的映射和孪生。
道德经“反者道之动”,道的动变是自然的循环,循环是返本归源,或返回原点,或发展到反面,或相反相成。比如开车时上面车身向前,下面车轮向后,向前向后同时发生、同时作用。现实世界到数字世界的孪生和映射,亦是同时发生、同时作用。
03 数据要素化:数中有实
按国家数据局的官方释义,原始数据是指初次或源头收集的、未经加工处理的数据;数据资源是指具有使用价值的数据,是可供人类利用的新型资源;数据要素是指能直接投入到生产和服务过程中的数据,是用于创造经济或社会价值的新型生产要素。
数据具备劳动对象和生产要素双重属性,当数据作为劳动对象属性时,它可以看成是这个原材料和半成品,并参与到价值创造过程,即生产、加工和增值环节。数据作为劳动资料属性具备使用价值,但不具备流通价值。
当数据作为生产要素属性时,它的作用和价值不仅体现在传统意义上的生产活动,还体现在数据驱动的价值创造中,能够帮助改善产品和服务,创造新的商业模式,有助于提高生产效率和创新能力,即数据要素同时具备使用价值和流通价值。
比如消费者购买一件衣服,在企业内部会形成一条订单数据记录(在什么时间、什么渠道、以什么价格、购买了多少数量的商品),这条数据记录如果不经过加工处理,此后在企业内部也不具备什么使用价值;如果对数据进行加工处理,投入生产或服务过程,就可形成使用价值,但还不具备流通价值。
数据要具备流通价值,需要从市场需求出发,比如市场需求是该消费者的消费层次、消费类型、消费特征、消费能力、偏好属性、消费习惯、消费频次等方面属性。这些属性映射的是现实世界商业活动的价值属性**(数中有实)****,也就是特征值或标签画像,是具备使用价值和流通价值的数据要素,也就是数据作为生产要素的属性部分。**
04 要素市场化:数实转化
商业的本质是价值创造和价值交换,数据要素的流通同样遵循此原则。数据要素本身是数字世界的数据,同时又映射了现实世界的价值属性,其使用价值具备了价值交换的基础,流通价值代表了具备流通的可能性。
按国家数据局的官方释义,数据要素市场化配置是指通过市场机制来配置数据这一新型生产要素,旨在建立一个更加开放、安全和高效的数据流通环境,不断释放数据要素价值。
但释放数据要素价值需要场景和载体来实现**(实数交互)**,这个载体可以理解为数据要素在不同场景的实例化体现,比如在消费场景的载体可以是积分、优惠券等。积分是数字属性,但积分的由来是现实世界商业活动的价值体现和承载,如购买100元送100积分,100积分可兑1元价值。
除消费领域积分、优惠券外,双碳积分、通证经济、数字金融服务、虚拟股权等,具备数实融合市场价值属性,都可作为数据要素流通的载体,而不需要额外的市场定价机制、数据标准和数据要素流通制度为前提。
例如可以通过找准价值场景,封装合适的数据要素实例化载体,打造相应生态价值平台,实现数据要素流通和生态价值互联。当然,如果能在局部或全局范围内找到类似黄金、石油、美元等一般等价物更好,做为市场各参与主体的价值衡量媒介和载体。
很玄妙的是,关于积分和数字化转型,说不清到底是谁最先提出来的,就像凭空出现的一样。从这个方面看,称积分为数据要素实例化的最佳实践恰如其分。
05 市场资本化:数实融合
通过积分、优惠券、数字金融服务等数据要素流通载体的运营形成收益后,基于所形成数据资产及其实际效益,用收益法和市场法合理评估、溢价和入表,沉淀实际案例和实践数据,制定相应的数据定价价值、数据要素流通标准和制度。
具备数据要素流通相应的机制和规范后,数据开放、数据共享、数据产品、数据元件、数据交易等场景就有了赖以生存的土壤和基础,促进产业数字化和数据产业集群的良性发展。
市场法是一种基于市场行情的数据资产评估方法,它通过比较市场上类似数据资产的交易价格和特征来评估数据资产的价值,但目前市场缺乏这方面的数据。当前数据资产评估是基于成本法,将数据作为原材料或半成品等劳动对象属性进行评估。
收益法和成本法是基于数据的生产要素属性来评估,具有倍乘和杠杆效应。通过精确量化数据资产的价值,实现数据资产的资本化,如将数据资产作为担保物,进行抵押、借款、融资和化债。
以上4个过程可以用以下太极图做归纳总结:
06 结语
数字经济转型的四大支柱“业务数据化、数据要素化、要素市场化、市场资本化”,实现了从现实世界到数字世界的映射、转化、交互和融合的闭环过程,未来可能**演化为“鸡与蛋”的循环依赖关系。
“道生一、一生二、二生三”,现实世界和数字世界相互融合、相互作用的同时,一定需要有第三种要素参与,也就是数据空间、算力、算法、模型等(也可视为人类基因和DNA在数字世界的延伸),共同推动数据要素价值的实现和数字经济的健康发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。