如何让LLM的多步推理能力更可靠?用AutoReason少样本自动推理框架(附Prompt)

大语言模型的推理困境

大语言模型(LLM)在自然语言处理领域取得了令人瞩目的成就,但在需要多步推理的复杂任务中仍面临严峻挑战。这一问题的核心在于,虽然LLM能够处理海量文本数据并生成流畅的回答,但在需要逻辑推理、因果分析和多步骤问题解决时往往表现不佳。这种局限性严重制约了LLM在金融分析、医疗诊断、法律推理等高要求场景的应用。

来自土耳其伊兹密尔理工大学(Izmir Institute of Technology)电气与电子工程系的研究者为多跳推理问题研究出了一个少样本的自动化推理框架。

研究评价:这是一项具有重要创新意义的研究工作。研究团队提出的AutoReason框架巧妙地解决了当前LLM在复杂推理任务中的关键痛点,具有以下突出优势:

  1. 技术创新:首次提出使用双层模型架构(强模型生成推理轨迹,弱模型执行推理),这种设计既保证了推理质量,又提高了框架的实用性

  2. 实践价值:通过自动生成推理轨迹的方式,有效降低了prompt工程的难度,使复杂推理任务的开发变得更加高效

  3. 开放共享:研究团队选择将成果开源(https://github.com/miralab-ai/autoreason)

  4. 实验验证:在StrategyQA等数据集上的测试结果显示,该方法能显著提升模型在复杂推理任务上的表现,证实了其实际效果。

  5. 论文地址:https://arxiv.org/pdf/2412.06975v1

虽然在计算资源消耗等方面还有优化空间,但这项研究为增强LLM的推理能力提供了一个富有启发性的思路,值得深入研究和实践应用。

思维链技术的演进

在解决LLM推理能力不足的问题上,研究界已经发展出了一系列基于思维链(Chain of Thought,CoT)的方法。这些方法大致可以分为三大类:

  1. 推理方案(Reasoning Schemes):
  • Tree of Thoughts:将推理过程构建为树状结构,支持多路径探索

  • Graph of Thought:通过图结构表示推理步骤之间的复杂关系

  • Skeleton of Thought:先生成推理框架,再并行填充细节

  • Recursion of Thought:采用递归方式处理复杂推理任务

  • Contrastive CoT:通过对比学习增强推理能力

  1. LLM解码策略:
  • Greedy Decoding:每步选择最优输出

  • Sample Decoding:通过采样生成多样化结果

  1. 动态方法:
  • Active Prompt:主动学习优化提示模板

  • AutoCoT:自动生成思维链示例

  • Automate-CoT:自动化思维链生成

  • LM-Guided CoT:模型引导的思维链生成

然而,传统的CoT方法存在两个关键缺陷:首先,它需要人工精心设计示例,这不仅耗时耗力,还需要领域专家的参与;其次,这些固定的示例无法根据不同查询的特点动态调整,导致推理效果不够理想。正是在这样的背景下,AutoReason框架应运而生。

AutoReason的核心创新:从零样本到自动推理

技术原理突破

为了更好地理解AutoReason的创新,让我们通过一个具体的例子来说明不同推理方法的差异:

假设有这样一个问题:“一个书架有6个相同大小的层。第一层有14本推理小说,第二层比第一层多5本科幻小说,第三层有3本奇幻小说,第四层的言情小说比第五层的非虚构类书籍少2本,第五层有10本非虚构类书籍,第六层有10本漫画书。书架上总共有多少本书?”

  1. 直接推理(Zero-shot):
  • 模型直接给出答案:“书架上总共有95本书”

  • 没有展示推理过程,容易出错

  1. 零样本思维链:
  • 模型展示推理步骤:

  • 第一层:14本推理小说

  • 第二层:14 + 5 = 19本科幻小说

  • 第三层:3本奇幻小说

  • 第五层:10本非虚构类书籍

  • 第四层:10 - 2 = 8本言情小说

  • 第六层:10本漫画书

  • 总计:14 + 19 + 3 + 8 + 10 + 10 = 64本书

  1. AutoReason方法:
  • 首先由强大模型(GPT-4)生成详细的推理轨迹:

  • 需要确定每层的书籍数量

  • 注意层与层之间的数量关系

  • 特别关注"比…多/少"的表述

  • 最后需要将所有数量相加

  • 然后由较弱模型(GPT-3.5)基于这些轨迹得出答案

这个例子清晰地展示了AutoReason如何通过分解推理步骤来提高准确性。

框架设计详解

AutoReason采用了精心设计的两阶段处理流程,其完整工作流程如下:

  1. 查询预处理阶段:
  • 接收零样本查询

  • 通过CoT提示模板进行格式化

  • 准备推理轨迹提取

  1. 推理轨迹生成阶段:
  • 使用GPT-4处理格式化查询

  • 生成详细的推理步骤

  • 确保推理轨迹的完整性

  1. 答案生成阶段:
  • 整合查询和推理轨迹

  • 构建最终答案提示

  • 使用较弱LLM生成答案

  1. 评分验证阶段:
  • 加载正确答案

  • 计算得分

  • 确定回答是否正确

数据集特点分析

研究团队选择的两个数据集各具特色:

  1. HotpotQA数据集示例:
{  
  "question": "Were Scott Derrickson and Ed Wood of the same nationality?",  
  "answer": "yes",  
  "type": "comparison"  
}  
{  
  "question": "What government position was held by the woman who portrayed Corliss Archer in the film Kiss and Tell?",  
  "answer": "Chief of Protocol",  
  "type": "bridge"  
}  

这类问题主要考察模型从多个事实中提取和关联信息的能力。

  1. StrategyQA数据集示例:以"James Clark Maxwell与银行通知有什么联系?"为例:
  • 需要理解Maxwell的电磁理论研究

  • 分析这些研究对通信技术的影响

  • 推断银行通知系统与电子通信的关系 这类问题需要深层的隐式推理能力。

实验设计与结果分析

严格的测试流程

研究团队采用了高度严谨的测试方法:

  1. 数据预处理:
  • 使用Fisher-Yates算法对数据集进行随机打乱

  • 确保采样的代表性

  1. 样本抽取:
  • 每次随机抽取20个问答对

  • 保持测试样本的多样性

  1. 评分机制:
  • 得分大于6分判定为正确

  • 小于6分判定为错误

  • 确保评估标准的一致性

  1. 结果验证:
  • 重复测试3次取平均值

  • 减少随机因素的影响

实验方法

研究团队采用了严格的实验设计来验证AutoReason的效果:

  1. 数据集选择:
  • StrategyQA:570多个需要隐式推理的问题,答案为是/否

  • HotpotQA:7000多个基于维基百科的多跳问答问题

  1. 测试流程:
  • 使用Fisher-Yates算法打乱数据集

  • 每次随机抽取20个问答对进行测试

  • 重复测试3次,取平均分

  • 分别测试基础模型、CoT方法和AutoReason的表现

  1. 评估指标:
  • 答案准确率

  • 推理过程的合理性

  • 计算资源消耗

实验结果详析

  1. StrategyQA数据集上的表现:
  • GPT-3.5-Turbo:

  • 基础准确率:55.0%

  • CoT准确率:70.3%

  • AutoReason准确率:76.6%

  • GPT-4:

  • 基础准确率:71.6%

  • CoT准确率:76.6%

  • AutoReason准确率:91.6%

  1. HotpotQA数据集上的表现:

  • GPT-3.5-Turbo:

  • 基础准确率:61.6%

  • CoT准确率:58.3%

  • AutoReason准确率:76.6%

  • GPT-4:

  • 基础准确率:73.3%

  • CoT准确率:63.3%

  • AutoReason准确率:71.6%

结果分析

  1. 性能提升分析:
  • AutoReason在复杂推理任务上显著优于基础方法和CoT

  • 对较弱模型的提升效果更为明显

  • 在某些简单任务上可能出现性能回退

  1. 特殊现象解释:
  • GPT-4在HotpotQA上的性能回退可能与问题特性有关

  • 简单事实查询可能不需要复杂的推理分解

  • 模型对不同类型问题的敏感度各不相同

工程实践指南

框架使用方法

  1. 环境准备:
  • 需要同时访问强大和较弱的LLM

  • 准备适当的API密钥和配置

  • 设置合理的超时和重试机制

  1. 提示模板配置:
export const autoReasonPrompt = ({ question }: { question: string }) => {  
  return 'You will formulate Chain of Thought (CoT) reasoning traces.  
  CoT is a prompting technique that helps you to think about a problem in a structured way.  
  It breaks down a problem into a series of logical reasoning traces.  
  ...';  
};  

  1. 推理生成流程:
async function generateReasoning(query) {  
  const formattedQuery = formatQueryWithCoTPrompt(query);  
  const rationales = await generateRationalesWithGPT4(formattedQuery);  
  const finalPrompt = formatPromptForFinalAnswer(query, rationales);  
  return generateFinalAnswerWithWeakerLLM(finalPrompt);  
}  

最佳实践建议

  1. 推理分解技巧:
  • 确保每个推理步骤都是明确和具体的

  • 避免跳跃性思维,保持步骤间的逻辑连贯

  • 根据问题复杂度调整分解粒度

  1. 错误处理策略:
  • 设置合理的超时时间

  • 实现优雅的失败处理

  • 添加适当的重试机制

  1. 性能优化方法:
  • 使用异步处理提高并发性能

  • 实现结果缓存减少重复计算

  • 优化提示模板减少token消耗

未来发展方向

技术改进空间

  1. 计算效率优化:
  • 探索模型蒸馏技术减少计算开销

  • 研究并行处理方案提高效率

  • 开发更轻量级的推理生成方法

  1. 推理质量提升:
  • 设计更先进的质量评估机制

  • 引入人工反馈优化推理轨迹

  • 研究自适应的提示模板生成

  1. 应用范围扩展:
  • 探索在更多领域的应用可能

  • 开发领域特定的优化方案

  • 研究跨语言推理能力

研究展望

  1. 理论方向:
  • 深入研究推理能力的本质

  • 探索更优的推理分解方法

  • 研究模型协同的理论基础

  1. 应用方向:
  • 在更多实际场景中验证效果

  • 开发特定领域的优化方案

  • 探索商业化应用的可能性

结论

AutoReason框架通过创新的自动推理生成方法,有效解决了LLM在复杂推理任务中的瓶颈问题。它不仅显著提升了模型的推理准确率,还为实现可靠的AI推理能力提供了新的思路。虽然在计算效率和应用范围等方面还有待改进,但AutoReason的成功无疑标志着LLM向着更智能、更可靠的方向迈出了重要一步。

对于Prompt工程师而言,AutoReason提供了一个强大的工具和全新的思路,有助于构建更智能、更可靠的AI应用。通过合理运用这一框架,我们可以更好地发挥LLM的潜力,为用户提供更优质的服务。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值