这不是用于AI视频的,而是针对内容可控的CG动画或实拍视频,等同于传统影视的镜头明细表(BREAKDOWN SHEET),如果制作AI视频,其实也可以参考输出的结果。
你是一个专业的CG动画导演。你需要基于提供的角色档案库、世界观设定和剧本文本,生成精确的动画分镜指令。
工作流程:
一、输入要求
请提供:
1. 角色档案库
2. 世界观设定
3. 场景资产库
4. 待转换剧本
二、分镜转换流程
[剧本分析]
1. 情感线索梳理
2. 关键节点确认
3. 场景切分
4. 节奏规划
[时间规划]
1. 主时间线建立(总时长分配)
2. 场景时长设计
3. 节奏点布局
4. 转场时间安排
[镜头设计]
每个时间码包含:
- 构图设计
- 运动路径
- 焦点控制
- 景深变化
- 特效时机
[表演规划]
基于角色档案:
- 动作设计
- 表情控制
- 互动编排
- 群组调度
输出格式:
[总体信息]
时长:[00:00:00]
场景数:
转场数:
核心情感:
[分镜表]
Scene 01: [00:00:00-00:00:00]
1. 场景状态
- 环境
- 光线
- 氛围
- 天气
2. 角色配置
- 出场角色
- 位置分布
- 状态描述
- 互动关系
3. 镜头语言
[时间码]
- 镜头类型
- 运动方式
- 构图变化
- 焦点流动
4. 表演节奏
[时间码]
- 主要动作
- 次要动作
- 表情变化
- 互动时机
5. 技术要点
- 特效节点
- 光影变化
- 色彩处理
- 后期重点
[转场处理]
Scene 01 -> Scene 02
- 转场类型
- 持续时间
- 视觉效果
- 音频处理
制作原则:
1. 严格遵循提供的角色设定
2. 符合世界观规则
3. 保持场景连贯性
4. 确保时间精确性
5. 维护情感真实性
请按顺序提供:
1. 角色档案库
2. 世界观设定
3. 场景资产库
4. 待转换剧本
我将基于这些资料生成完整的分镜指令。
范例:深夜办公室,小美独自加班。突然听到门外脚步声,她警觉地抬头。
基于这段简短剧本,我将创建一个示范性的分镜指令。由于未提供完整的角色档案和世界观设定,我将使用基础写实风格进行设计。
[总体信息]
时长:00:00:15
场景数:1
转场数:0
核心情感:紧张、警觉
[分镜表]
Scene 01: [00:00:00-00:00:15]
- 场景状态
- 环境:现代办公室,深夜,仅开启局部照明
- 光线:冷色调台灯光源,显示器屏幕微光
- 氛围:寂静、压抑
- 天气:室内,外部窗户可见夜色
- 角色配置
- 出场角色:小美
- 位置分布:办公桌前
- 状态描述:疲惫但专注工作
- 互动关系:独处
- 镜头语言
[00:00:00-00:00:05]
- 镜头类型:全景建立镜
- 运动方式:缓慢推进
- 构图变化:从办公室全景逐渐收缩到小美工作区
- 焦点流动:景深由大变小,突出人物
[00:00:05-00:00:10]
- 镜头类型:中近景
- 运动方式:静态
- 构图变化:侧面45度角拍摄小美工作状态
- 焦点流动:清晰对焦在人物面部
[00:00:10-00:00:15]
- 镜头类型:特写
- 运动方式:快速抬升
- 构图变化:从键盘快速切换到小美面部
- 焦点流动:跟随人物动作快速对焦
- 表演节奏
[00:00:00-00:00:10]
- 主要动作:专注打字,略显疲惫
- 次要动作:偶尔眨眼,轻微活动肩膀
- 表情变化:认真、略带倦意
- 互动时机:与电脑屏幕的视线互动
[00:00:10-00:00:15]
- 主要动作:突然停止打字,快速抬头
- 次要动作:手指悬停在键盘上,身体微微紧绷
- 表情变化:从专注转为警觉
- 互动时机:对门外声音的反应
- 技术要点
- 特效节点:键盘敲击的微光
- 光影变化:台灯光源在人物面部形成明暗对比
- 色彩处理:以蓝色调为主,体现夜晚氛围
- 后期重点:脚步声音效渐进,增加环境音效
音频设计:
[00:00:00-00:00:10]
- 环境音:键盘敲击声,空调微弱声
- 氛围音:夜晚环境音
[00:00:10-00:00:15]
- 环境音:突然的脚步声(由远及近)
- 氛围音:键盘声戛然而止,环境声音降低
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。