Cohere,一家领先的基础模型公司,近日发布了其最新的企业级 AI 平台 North。North 集成了基于 RAG 的强大搜索功能、高性能 Command R 系列模型以及便捷的 Agent 构建工具,打造出一个安全、易用且高度可集成的 AI 工作空间。North 采用私有化部署,确保数据安全,并通过低代码平台简化 AI 助手开发。North 的推出标志着 Cohere 从基础模型向企业级 AI 应用的跃进,为企业拥抱 AI 时代提供了全新的选择。
Cohere:从基础模型到企业级 AI 应用
Cohere 是一家总部位于多伦多的人工智能公司,由 Aidan Gomez、Ivan Zhang 和 Nick Frosst 于 2019 年创立。该公司致力于构建能够理解和生成自然语言的 AI 模型,并将其应用于实际场景中。Cohere 已经开发了包括 Command 系列在内的多个高性能大型语言模型 (LLMs),并在自然语言处理领域取得了领先地位。如今,Cohere 正在将其技术专长从基础模型扩展到更广泛的企业级 AI 应用,而 North 平台的发布正是这一战略的关键一步。
North:开启企业 AI 应用新篇章
随着 AI 技术的快速发展,越来越多的企业开始探索如何利用 AI 提升运营效率和竞争力。然而,信息孤岛、数据安全以及 AI 应用开发门槛高等问题,仍然是阻碍企业广泛采用 AI 技术的主要障碍。
Cohere 推出的 North AI 工作空间,正是为了解决这些问题而生。North 以安全、易用、可集成为核心特性,为企业提供了一个全新的 AI 应用平台。North 的推出,标志着 AI 应用新篇章的开启,它将帮助企业更轻松地构建和部署 AI 应用,释放 AI 的巨大潜能。
North 的安全堡垒:数据安全的守护神
North 的安全特性是其核心优势之一。它采用了多种机制来确保企业数据的安全和隐私,为企业安心拥抱 AI 时代打下了坚实的基础。
私有化部署:数据安全的守护神
North 支持企业私有云和本地部署,这意味着企业的数据不会离开自己的服务器,从而避免了数据泄露的风险。这种私有化部署方式尤其适合金融、医疗等对数据安全有极高要求的行业。数据不出门,安全有保障,企业更放心。
细粒度权限控制:数据访问的“守门员”
North 可以与企业现有的身份和访问管理规则无缝集成,这意味着企业可以根据员工的角色和职责,精确控制他们对数据的访问权限。这种细粒度的权限控制机制确保了数据只被授权人员访问,从而避免了数据滥用和违规访问的风险。
多重安全保障机制
除了私有化部署和细粒度权限控制之外,North 还采用了数据加密、访问日志、安全审计等多种安全措施,全方位保护企业的数据资产。这些安全机制确保了 North 的安全性,使其成为企业值得信赖的 AI 工作空间。
North 的“智慧大脑”:RAG 与 Command R 驱动的强大内核
North 之所以能够成为企业 AI 应用的强大平台,离不开其强大的基础模型和技术内核,特别是 基于 RAG 的多模态搜索和 Command R 等高性能 LLMs。
Compass:基于 RAG 的企业级多模态搜索
Compass 是 North 的核心组件之一,它是一个先进的、基于 RAG 的企业级多模态搜索引擎,可以帮助用户快速准确地找到所需信息。Compass 利用了 Cohere 先进的检索模型 Embed 和 Rerank 来实现高效的 RAG(检索增强生成)应用,可以精准地检索与用户查询相关的信息。Embed 是一个领先的多模态搜索和检索工具,Rerank 是一个强大的模型,可以提供语义增强的搜索质量。此外,Compass 还具备强大的文档解析能力,支持 PDF、PPT、DOCX、XLSX 等多种格式,打破了数据壁垒,让用户可以轻松访问各种类型的数据。
Compass 还采用了托管索引技术,可以提升性能,降低延迟,让搜索更流畅。
Command R:为企业级应用而生的高性能 LLMs
Command R 是 Cohere 公司专门为企业级应用开发的高性能 LLMs。它针对实际应用场景进行了优化,更懂企业需求,能够在保证准确性的同时,提供高效的性能。Command R 还支持多语言,可以帮助企业拓展全球业务。Command R 的强大性能为 North 提供了坚实支撑,使其轻松胜任各种复杂任务。
North 的“效率加速器”:简化流程,释放员工创造力
North 不仅拥有强大的基础模型,更提供了一系列易用的工具,帮助企业员工提高工作效率,释放创造力。
无缝集成:连接一切,打破信息孤岛
North 可以与企业常用的工具和应用无缝集成,例如 Salesforce、Google Workspace 、Slack 等,从而实现数据的互联互通。此外,North 还支持与企业内部应用的集成,企业可以根据自己的需求定制专属的解决方案。这种无缝集成能力打破了信息孤岛,实现了工作流程的自动化。
快速构建 AI 助手:人人都是 AI 开发者
North 提供了一个低代码平台,使员工无需专业的编程技能,就可以快速构建 AI 助手。用户可以通过简单的拖拽操作,定制 AI 助手的功能,以满足个性化的需求。此外,North 还支持 AI 助手的共享,方便团队成员之间的协作。
支持多种数据格式:释放数据的无限潜能
North 不仅支持文本数据,还支持图像、表格等多种数据格式。这意味着企业可以利用 North 全面挖掘数据的价值,获得更深入的洞察。
North 的应用:赋能各行各业
North 的应用场景非常广泛,可以赋能各行各业。
金融领域:North for Banking 的先行探索
Cohere 已经与加拿大皇家银行(RBC)合作开发了 North for Banking,这是一个专为金融行业打造的 AI 解决方案。North for Banking 满足了金融行业对数据安全和隐私的严苛要求,可以帮助银行提升效率,改善客户服务,并开发新的金融产品。
其他行业应用场景:无限可能
除了金融领域,North 还可以在 HR、客户支持、IT 等多个领域发挥作用。
-
HR 领域: 例如,North 可以通过自然语言处理技术,自动筛选海量简历,快速匹配符合职位要求的候选人;还可以构建智能问答系统,解答员工关于薪酬福利、假期政策等方面的疑问,提升 HR 部门的工作效率。
-
客户支持领域: 例如,North 可以搭建智能客服机器人,7x24 小时在线解答客户常见问题,并根据客户需求智能转接人工客服,提升客户满意度和响应速度。
-
IT 领域: 例如,North 可以监控 IT 系统运行状态,自动识别并预警潜在问题,还可以根据历史数据分析故障原因,并提供解决方案建议,提升 IT 运维效率和系统稳定性。
North 的优势与挑战:持续创新,引领未来
North 相比同类产品优势明显,但仍需直面一些挑战。
易用性:降低 AI 应用门槛
North 的低代码平台和直观的用户界面,使得即使没有专业编程技能的员工,也可以轻松上手使用。这大大降低了 AI 应用的门槛,让更多人能够受益于 AI 技术。
安全性:数据安全的坚实保障
North 的私有化部署和细粒度权限控制机制,为企业数据提供了坚实的保障。这使得企业可以安心使用 North,而无需担心数据泄露的风险。
集成性:打破信息孤岛,实现流程自动化
North 支持与多种工具和应用的集成,实现了数据的互联互通。这打破了信息孤岛,实现了流程的自动化,从而提升了企业的整体效率。
与竞品的比较:保持领先地位
根据测试,North 在多个方面优于 Microsoft Copilot 和 Google Vertex AI Agent Builder,展现出更卓越的性能。
然而,North 仍然需要进一步证明其在不同行业和场景下的有效性和可靠性,不断拓展应用边界,以保持其领先地位。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。