提示词规则
零样本提示
可在没有提供任何示例的情况下,直接指示模型完成任务的方法。核心思想是,凭借大模型在海量数据中学习到的通用知识和能力,直接理解任务要求并给出正确的答案。
案例
# prompt将情绪分类为中性、负面或正面。文本:我今天太开心了!情感:
少样本提示
利用大型语言模型 (LLM) 的能力,通过在提示词中提供少量示例,来引导模型完成特定任务的方法。与零样本提示不同,少样本提示通过示例来帮助模型理解任务的模式和规则,进而更准确地生成符合要求的输出。
案例
# prompt“whatpu”是坦桑尼亚的一种小型毛茸茸的动物。一个使用whatpu这个词的句子的例子是:我们在非洲旅行时看到了这些非常可爱的whatpus。
“farduddle”是指快速跳上跳下。一个使用farduddle这个词的句子的例子是:
链式思考(COT)提示
通过在提示词中引导大型语言模型 (***LLM***) 逐步进行推理,来解决复杂问题。CoT 提示鼓励模型一步一步地思考,模拟人类的推理过程,从而提高多步推理和逻辑分析类任务的表现。
案例
# prompt这组数中的奇数加起来是偶数:4、8、9、15、12、2、1。A:将所有奇数相加(9、15、1)得到25。答案为False。这组数中的奇数加起来是偶数:15、32、5、13、82、7、1。A:
更夸张的是,只需要把**「让我们逐步思考」加入进去,就可以起效。这种称之为「零样本** COT 提示」。
# 反面案例# prompt我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?# output1个苹果
# 利用COT得到正确答案# prompt我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?让我们逐步思考。# output首先,您从10个苹果开始。您给了邻居和修理工各2个苹果,所以您还剩下6个苹果。然后您买了5个苹果,所以现在您有11个苹果。最后,您吃了1个苹果,所以您还剩下10个苹果。
现在很多模型已经暗含了 COT 模式,分析非常细。
检索增强生成(RAG)
通过结合外部知识库的检索和大型语言模型 (LLM) 的生成能力,来提高LLM在知识密集型任务上的表现。
RAG 先从外部知识库中检索相关信息,然后利用检索到的信息进行生成,从而实现与事实更加一致,生成的答案更可靠,还有助于缓解「幻觉」问题。
案例
使用 LangChain 构建 RAG(检索增强生成)应用:https://python.langchain.com/docs/tutorials/rag/
主要包括以下步骤:
加载文档 (Loading documents): 从各种来源加载数据,例如文本文件,网页等。分割文本 (Splitting text): 将文档分割成更小的文本块,以便于检索。创建向量嵌入 (Creating embeddings): 将文本块转换为向量表示,以便于计算相似度。存储向量 (Storing vectors): 将向量存储到向量数据库中,以便于快速检索。检索相关文档 (Retrieving relevant documents): 使用用户的查询从向量数据库中检索相关的文本块。利用LLM生成答案 (Generate answer with LLM): 将检索到的文本块和用户查询组合成提示,并使用 LLM 生成最终答案。
自我反思 Reflexion
通过让大型语言模型 (LLM) 对其自身的输出进行反思和迭代,来提高LLM在复杂任务上的表现。反思提示鼓励模型先生成一个初步答案,然后对该答案进行评估和反思,再反思结果进行改进,迭代生成最终的答案。
案例
除了上述 5 个规则,还有 12 个重要的规则如下:
- 自我一致性
- 生成知识提示
- prompt chaining
- 思维树(TOT)
- 自动推理并使用工具(ART)
- 自动提示工程师
- 主动提示
- 方向性刺激提示
- PAL程序辅助语言模型
- ReAct框架
- 多模态思维链提示
- 基于图的提示
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。