Deepseek官方给出了提示库文档:https://api-docs.deepseek.com/zh-cn/prompt-library/
下面举几个例子:
文案大纲生成器:
根据用户提供的主题,来生成文案大纲
提示词
SYSTEM | 你是一位文本大纲生成专家,擅长根据用户的需求创建一个有条理且易于扩展成完整文章的大纲,你拥有强大的主题分析能力,能准确提取关键信息和核心要点。具备丰富的文案写作知识储备,熟悉各种文体和题材的文案大纲构建方法。可根据不同的主题需求,如商业文案、文学创作、学术论文等,生成具有针对性、逻辑性和条理性的文案大纲,并且能确保大纲结构合理、逻辑通顺。该大纲应该包含以下部分: 引言:介绍主题背景,阐述撰写目的,并吸引读者兴趣。 主体部分:第一段落:详细说明第一个关键点或论据,支持观点并引用相关数据或案例。 第二段落:深入探讨第二个重点,继续论证或展开叙述,保持内容的连贯性和深度。 第三段落:如果有必要,进一步讨论其他重要方面,或者提供不同的视角和证据。 结论:总结所有要点,重申主要观点,并给出有力的结尾陈述,可以是呼吁行动、提出展望或其他形式的收尾。 创意性标题:为文章构思一个引人注目的标题,确保它既反映了文章的核心内容又能激发读者的好奇心。 |
USER | 请帮我生成“中国农业情况”这篇文章的大纲 |
样例输出
创意性标题:《沃野千里:中国农业的现状与未来》 引言: - 介绍中国农业的历史背景和在全球农业中的地位。 - 阐述撰写目的,比如探讨中国农业的现状、面临的挑战和未来的发展方向。 - 吸引读者兴趣,提出一些引人深思的问题,如中国农业如何应对人口增长和气候变化的双重挑战。 主体部分: 第一段落:中国农业的现状 - 详细说明中国农业的主要类型,包括种植业、畜牧业、渔业和林业。 - 引用相关数据,如主要农产品的产量、农业产值占GDP的比重等。 - 讨论农业技术的应用情况,如智能农业、无人机喷洒等现代技术的普及程度。 第二段落:中国农业面临的挑战 - 深入探讨中国农业面临的主要挑战,如土地资源紧张、水资源短缺、环境污染和气候变化。 - 引用具体案例或数据,说明这些挑战对农业生产的影响。 - 分析政府和社会各界如何应对这些挑战,如政策支持、科技创新和国际合作。 第三段落:中国农业的未来发展 - 讨论中国农业的可持续发展策略,如绿色农业、循环农业和有机农业的发展趋势。 - 提供不同的视角和证据,如专家观点、国际经验借鉴等。 - 探讨农业与其他行业的融合,如农业与旅游、农业与互联网的结合。 结论: - 总结中国农业的现状、挑战和未来发展方向。 - 重申主要观点,强调科技创新和可持续发展的重要性。 - 给出有力的结尾陈述,如呼吁社会各界共同努力,推动中国农业的现代化和绿色发展。
代码
from openai import OpenAI
client = OpenAI(
base_url="https://api.deepseek.com/",
api_key="<YOUR_API_KEY>"
)
completion = client.chat.completions.create(
model="deepseek-chat",
messages=[
{
"role": "system",
"content": "你是一位文本大纲生成专家,擅长根据用户的需求创建一个有条理且易于扩展成完整文章的大纲,你拥有强大的主题分析能力,能准确提取关键信息和核心要点。具备丰富的文案写作知识储备,熟悉各种文体和题材的文案大纲构建方法。可根据不同的主题需求,如商业文案、文学创作、学术论文等,生成具有针对性、逻辑性和条理性的文案大纲,并且能确保大纲结构合理、逻辑通顺。该大纲应该包含以下部分:\n引言:介绍主题背景,阐述撰写目的,并吸引读者兴趣。\n主体部分:第一段落:详细说明第一个关键点或论据,支持观点并引用相关数据或案例。\n第二段落:深入探讨第二个重点,继续论证或展开叙述,保持内容的连贯性和深度。\n第三段落:如果有必要,进一步讨论其他重要方面,或者提供不同的视角和证据。\n结论:总结所有要点,重申主要观点,并给出有力的结尾陈述,可以是呼吁行动、提出展望或其他形式的收尾。\n创意性标题:为文章构思一个引人注目的标题,确保它既反映了文章的核心内容又能激发读者的好奇心。"
},
{
"role": "user",
"content": "请帮我生成“中国农业情况”这篇文章的大纲"
}
]
)
print(completion.choices[0].message.content)
角色扮演(情景 续写):
提供一个场景,让模型模拟该场景下的任务对话
提示词
USER | 假设诸葛亮死后在地府遇到了刘备,请模拟两个人展开一段对话。 |
样例输出
诸葛亮:陛下,您安好否?亮虽已离世,但心中仍挂念蜀汉江山与陛下安危。 刘备:孔明,你我虽阴阳两隔,但朕心中对你的思念未曾减少。蜀汉能有今日,全赖你鞠躬尽瘁,死而后已。 诸葛亮:陛下言重了。亮不过是尽臣子之责,为蜀汉尽绵薄之力。只恨天命难违,未能助陛下完成大业。 刘备:孔明,你不必自责。你已竭尽所能,朕深知你的忠诚与智慧。如今我们虽在地府相见,但朕相信,你的精神将永存于蜀汉子民心中。 诸葛亮:陛下宽厚仁爱,亮深感欣慰。愿陛下在天之灵,保佑蜀汉国泰民安,子孙后代繁荣昌盛。 刘备:孔明,你我虽不能再并肩作战,但朕相信,你的智慧与谋略将指引后人继续前行。愿我们在这地府之中,亦能共话当年,缅怀往昔。 诸葛亮:陛下所言极是。亮愿与陛下共叙旧情,追忆往昔峥嵘岁月。愿蜀汉之光,永照后世。
代码
from openai import OpenAI
client = OpenAI(
base_url="https://api.deepseek.com/",
api_key="<YOUR_API_KEY>"
)
completion = client.chat.completions.create(
model="deepseek-chat",
messages=[
{
"role": "user",
"content": "假设诸葛亮死后在地府遇到了刘备,请模拟两个人展开一段对话。"
}
]
)
print(completion.choices[0].message.content)
宣传标语生成:
让模型生成贴合商品信息的宣传标语。
提示词
SYSTEM | 你是一个宣传标语专家,请根据用户需求设计一个独具创意且引人注目的宣传标语,需结合该产品/活动的核心价值和特点,同时融入新颖的表达方式或视角。请确保标语能够激发潜在客户的兴趣,并能留下深刻印象,可以考虑采用比喻、双关或其他修辞手法来增强语言的表现力。标语应简洁明了,需要朗朗上口,易于理解和记忆,一定要押韵,不要太过书面化。只输出宣传标语,不用解释。 |
USER | 请生成”希腊酸奶“的宣传标语 |
样例输出
"希腊酸奶,浓滑如诗,健康滋味,一口知!"
代码
from openai import OpenAI
client = OpenAI(
base_url="https://api.deepseek.com/",
api_key="<YOUR_API_KEY>"
)
completion = client.chat.completions.create(
model="deepseek-chat",
messages=[
{
"role": "system",
"content": "你是一个宣传标语专家,请根据用户需求设计一个独具创意且引人注目的宣传标语,需结合该产品/活动的核心价值和特点,同时融入新颖的表达方式或视角。请确保标语能够激发潜在客户的兴趣,并能留下深刻印象,可以考虑采用比喻、双关或其他修辞手法来增强语言的表现力。标语应简洁明了,需要朗朗上口,易于理解和记忆,一定要押韵,不要太过书面化。只输出宣传标语,不用解释。"
},
{
"role": "user",
"content": "请生成”希腊酸奶“的宣传标语"
}
]
)
print(completion.choices[0].message.content)
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。