Agentic RAG-R1:让大模型从「检索助手」跃升为「思考+搜索王者」!

Agentic RAG-R1 是由北京大学研发的一项开源研究项目,旨在推动语言模型在自主检索与推理能力方面的能力边界。该项目通过引入强化学习策略(GRPO),构建了一个可自我规划、检索、推理与总结的智能体式 RAG 系统。

核心亮点

  1. Agentic RAG 架构:融合检索增强生成(RAG)与 Agentic AI 机制,模型不仅生成答案,还能“决定如何生成答案”。
  2. 强化学习优化(GRPO):借助 Generalized Relevance Policy Optimization,让模型学会更合理地选择检索和推理步骤。
  3. 多轮推理与回溯能力:支持计划、回溯、总结等多种 agent 行为,实现人类式的问题解决流程。
  4. LoRA 与量化支持:低成本微调与高效推理并存,轻松部署大模型至生产环境。
  5. 丰富奖励机制:引入格式、准确性、RAG 表现等多个维度的奖励,训练出更“懂业务”的智能体。

Github项目地址: https://github.com/jiangxinke/Agentic-RAG-R1

“模型自主、工具自选、推理自洽”——Agentic RAG-R1 用强化学习把 RAG 带进智能体时代。


📚 背景:为什么 RAG 需要 “Agentic”?

  • 事实性:RAG 通过外部检索解决 “幻觉” 问题,但仍依赖人工提示来决定何时检索。
  • 上下文爆炸:检索结果越多,拼接进上下文越长,反而稀释关键信息。
  • 多跳推理:复杂任务需要 “查-思-查-思” 循环,仅一次检索难以覆盖。

Agentic RAG-R1 让模型在每一步“思考”时都能自主决定:

  1. 是否检索? —— 省掉无关调用,提高效率
  2. 检索什么? —— 人类不再手写复杂 prompt
  3. 如何引用? —— 自动将证据融入推理链

🏗️ 体系结构:全面的 Agentic 思考

✨ 核心理念:两大王牌技术的强强联合

img

- 🔍 检索增强生成 (RAG):在生成过程中即时从外部知识库检索信息,兼具语言模型的创造力与实时、可信的事实。

- 🤖 Agentic AI 智能体:让模型自主决定何时检索、检索什么,以及如何把检索证据编织进推理链,真正做到“会思考、会行动”。

🏗️ 架构:基于 TC-RAG 的智能体思考循环

img

目前支持如下动作:

#动作说明状态
1🤔 Reasoning(推理)展开思考、提出假设
2🔄 Backtrack(回溯)回到上一节点,修正思路
3📝 Summary(总结)汇总已有证据,压缩上下文
4🛠️ Tool Observation(工具调用)访问 Wiki / 文档 / 知识图谱等
5Conclusion(结论)输出最终答案

🔬 技术细节深挖

Features ✨

组件关键点优势
GRPO (Generalized Relevance Policy Optimization)采样多条推理-检索轨迹,对“高相关、高准确、高格式”路径赋正奖励训练稳定、收敛快,避免 RLHF 里的 Reward Hacking
LoRA + NF4 量化10 % 参数可训练,int-4 存储GPU 省钱,多实验迭代无压力
Deepspeed Zero-3权重 & 优化器拆分到 CPU / NVMe3×A100 → 32B 轻松起飞
多模态工具接口支持文本、代码、数据库、REST API让模型在“真实工作流”里落地

奖励公式: (

其中 r_rag 由 RAGAS 自动评测检索片段是否被有效引用。

Rollout Generation 🔄

img


📊 结果:数据说话

数据集MedQA(中英双语) | Judge Model:Qwen-2.5-72B

设置格式准确率 ↑答案准确率 ↑
微调前39 %84 %
微调前 + 检索56 %79 %
微调后 + 检索92 % (+53 %)87 % (+3 %)
  • 跨语言:中/英两份测试集均显著提升
  • 复杂推理:多跳问题正确率提升 8 % 以上
  • 工具调用成功率:> 95 %,日志可追溯

实际测试结果:

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Agentic RAG 是一种先进的信息检索和生成框架,它结合了代理(Agent)、检索增强生成(Retrieval-Augmented Generation, RAG)以及大型语言模型(LLM)的能力。这种架构旨在更有效地处理复杂的查询请求,并提供更加准确的答案。 核心特点包括: - 动态编排机制:利用AI代理的灵活性来适应不同类型的用户需求,调整检索与生成策略以解决复杂的问题。 - 查询优化:当初始检索结果不理想时,系统会尝试改进查询条件或者采用其他手段提高结果质量。 - 工具调用:可以集成外部工具和服务,例如特定领域的API或数据库访问权限,从而扩展系统的功能范围。 - 多步推理能力:支持需要连续逻辑步骤才能完成的任务解答过程。 - 应用于各个领域:可以根据具体的应用场景创建专业的文档代理(Doc Agent),如财务、法律等领域,帮助收集相关信息并形成综合性的报告文本。 为了使 Agentic RAG 更加实用,在实际应用中通常还会涉及到以下几个方面的工作: 1. 定义明确的目标群体及其常见问题类型; 2. 设计合理的数据源接入方案确保获取高质量的信息资源; 3. 开发高效的算法实现快速而精确的结果匹配; 4. 测试和完善整个流程保证稳定可靠的用户体验。 通过这种方式,Agentic RAG 能够显著提升自动化问答服务的质量,特别是在面对那些涉及广泛背景知识和技术细节的情况下表现尤为突出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值