Agentic RAG-R1 是由北京大学研发的一项开源研究项目,旨在推动语言模型在自主检索与推理能力方面的能力边界。该项目通过引入强化学习策略(GRPO),构建了一个可自我规划、检索、推理与总结的智能体式 RAG 系统。
核心亮点
- Agentic RAG 架构:融合检索增强生成(RAG)与 Agentic AI 机制,模型不仅生成答案,还能“决定如何生成答案”。
- 强化学习优化(GRPO):借助 Generalized Relevance Policy Optimization,让模型学会更合理地选择检索和推理步骤。
- 多轮推理与回溯能力:支持计划、回溯、总结等多种 agent 行为,实现人类式的问题解决流程。
- LoRA 与量化支持:低成本微调与高效推理并存,轻松部署大模型至生产环境。
- 丰富奖励机制:引入格式、准确性、RAG 表现等多个维度的奖励,训练出更“懂业务”的智能体。
Github项目地址: https://github.com/jiangxinke/Agentic-RAG-R1
“模型自主、工具自选、推理自洽”——Agentic RAG-R1 用强化学习把 RAG 带进智能体时代。
📚 背景:为什么 RAG 需要 “Agentic”?
- 事实性:RAG 通过外部检索解决 “幻觉” 问题,但仍依赖人工提示来决定何时检索。
- 上下文爆炸:检索结果越多,拼接进上下文越长,反而稀释关键信息。
- 多跳推理:复杂任务需要 “查-思-查-思” 循环,仅一次检索难以覆盖。
Agentic RAG-R1 让模型在每一步“思考”时都能自主决定:
- 是否检索? —— 省掉无关调用,提高效率
- 检索什么? —— 人类不再手写复杂 prompt
- 如何引用? —— 自动将证据融入推理链
🏗️ 体系结构:全面的 Agentic 思考
✨ 核心理念:两大王牌技术的强强联合
- 🔍 检索增强生成 (RAG):在生成过程中即时从外部知识库检索信息,兼具语言模型的创造力与实时、可信的事实。
- 🤖 Agentic AI 智能体:让模型自主决定何时检索、检索什么,以及如何把检索证据编织进推理链,真正做到“会思考、会行动”。
🏗️ 架构:基于 TC-RAG 的智能体思考循环
目前支持如下动作:
# | 动作 | 说明 | 状态 |
---|---|---|---|
1 | 🤔 Reasoning(推理) | 展开思考、提出假设 | ✅ |
2 | 🔄 Backtrack(回溯) | 回到上一节点,修正思路 | ✅ |
3 | 📝 Summary(总结) | 汇总已有证据,压缩上下文 | ✅ |
4 | 🛠️ Tool Observation(工具调用) | 访问 Wiki / 文档 / 知识图谱等 | ✅ |
5 | ✅ Conclusion(结论) | 输出最终答案 | ✅ |
🔬 技术细节深挖
Features ✨
组件 | 关键点 | 优势 |
---|---|---|
GRPO (Generalized Relevance Policy Optimization) | 采样多条推理-检索轨迹,对“高相关、高准确、高格式”路径赋正奖励 | 训练稳定、收敛快,避免 RLHF 里的 Reward Hacking |
LoRA + NF4 量化 | 10 % 参数可训练,int-4 存储 | GPU 省钱,多实验迭代无压力 |
Deepspeed Zero-3 | 权重 & 优化器拆分到 CPU / NVMe | 3×A100 → 32B 轻松起飞 |
多模态工具接口 | 支持文本、代码、数据库、REST API | 让模型在“真实工作流”里落地 |
奖励公式: (
其中 r_rag 由 RAGAS 自动评测检索片段是否被有效引用。
Rollout Generation 🔄
📊 结果:数据说话
数据集:MedQA(中英双语) | Judge Model:Qwen-2.5-72B
设置 | 格式准确率 ↑ | 答案准确率 ↑ |
---|---|---|
微调前 | 39 % | 84 % |
微调前 + 检索 | 56 % | 79 % |
微调后 + 检索 | 92 % (+53 %) | 87 % (+3 %) |
- 跨语言:中/英两份测试集均显著提升
- 复杂推理:多跳问题正确率提升 8 % 以上
- 工具调用成功率:> 95 %,日志可追溯
实际测试结果:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。