今天同事问我 AI 能不能做 PPT,有个述职报告要做,问我能不能帮忙,这时我脑海中的第一画面就是 DeepSeek + Kimi
DeepSeek 擅长逻辑构建与内容生成,其深度思考能力当前测试下来,不愧为国内No.1,而且还会把中间的思考过程展示出来,大多时候会给出很多我们意想不到的思路。
Kimi智能助手的功能又很丰富,其中的PPT助手,就很适合将 DeepSeek 深度思考整理出来内容一键生成PPT
优秀的工具 + 优秀的工具 + 我 这相当于 1 + 1 + 1 > 3
话不多说,接下来我就带你用 DeepSeek + Kimi 快速生成一篇可用的PPT。
Step 1:用DeepSeek生成PPT大纲和内容框架
大家不用担心这个生成PPT大纲的提示词自己想不出来,不知道怎么写,打开DeepSeek对话窗口,不知道该输入些什么,这里我已经整理好了通用的提示词模板,大家只需要替换框架中的内容即可。
“
我要做一个【主题】的PPT,面向【受众】,希望突出【核心需求】,要求【效果关键词】,请生成大纲及内容框架,并以Markdown格式输出
当然,这里只是一个大框架,实际上任何能帮助我们描述清楚需求的提示词都是优秀的,大家也可以继续补充框架的基本信息,以达到输出更加超预期的效果。
这里我就先按照这个框架输入提示词:
“
我需要做一个《2025年智能锁市场分析》PPT,面向公司管理层,希望突出技术趋势与竞品对比,要求数据详实且适合会议汇报,请生成大纲及内容框架,并以Markdown格式输出
此时,我们已经拿到了大纲和内容框架。
PS:这里也可以根据需要继续补充对话,比如补充更详细的背景信息,提供具体的数据支撑,让DeepSeek再次生成更符合你的PPT大纲和内容框架。
Step 2:Kimi一键生成PPT初稿
打开Kimi → 点击左侧“Kimi+” → 选择“PPT助手”
把 DeepSeek 生成的大纲和内容框架输入进去 → 点击「一键生成PPT」。
选择模板 → 生成PPT
此时你会有一个很爽的体验,看着PPT在「刷刷的」做。很解压有木有???
Step 3:审核数据与细节调整优化
-
检查标题层级是否清晰
-
删减冗余文字(每页不超过6行)
-
添加公司Logo与版权声明
-
调整行间距(推荐1.5倍)
调整完毕后右上角就可以下载导出啦,至此PPT就做完了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。