1. 引言
在 AI 快速发展的今天,我们已经习惯了通过聊天界面与 AI 助手进行交互。无论是处理邮件、编写代码,还是进行创意写作,这种交互模式已经成为我们日常工作的一部分。然而,随着应用场景的不断拓展,传统的聊天式交互开始显露出其局限性。
最明显的问题是效率瓶颈:每次需要 AI 协助时,我们都必须主动打开对话窗口,输入指令,等待响应。这种方式不仅打断了工作流程,还限制了我们同时处理多个任务的能力。想象一下,如果你有一位人类助理,你会希望每次需要帮助时都要敲门进入他的办公室吗?显然不会。这就是为什么我们需要一种新的交互范式,而 Langchain 团队提出的 Ambient Agent 正是对这一问题的创新性解答(点击阅读原文进入 Langchain 文章)
2. 什么是 Ambient Agent?
2.1 核心特征
Ambient Agent 代表了一种全新的 AI 助手范式,其本质是一个能够在环境中持续存在并主动工作的 AI Agent。与传统的被动响应式 AI 不同,Ambient Agent 具有自主性、持续性和环境感知能力。
这种 Agent 系统最显著的特征是其主动性。它不需要等待用户的明确指令就能开始工作,而是通过持续监控环境中的各种信号来主动发现和处理任务。比如,它能够自动监控你的邮箱,识别重要邮件,并在适当的时候提醒你或者采取行动。
更重要的是,Ambient Agent 可以同时处理多个任务。这种并行处理能力极大地提升了工作效率,让 AI 助手更接近于真实助理的工作方式。它不再被限制在单一的对话窗口中,而是可以在后台同时推进多个工作流程。
2.2 与传统聊天机器人的对比
传统的聊天机器人采用一问一答的交互模式,这种模式简单直接,但也带来了诸多限制。首先,它要求用户在每次需要帮助时都必须主动发起对话,这增加了交互成本。其次,聊天形式的交互通常是同步的,用户需要等待 AI 的响应才能继续下一步操作,这在处理复杂任务时特别耗时。
相比之下,Ambient Agent 采用了异步的工作模式。它能够在后台持续运行,主动监控和处理各种任务,只在真正需要用户参与时才会发出通知。这种方式不仅减少了用户的操作负担,还提高了整体的工作效率。
3. Ambient Agent 的工作原理
3.1 后台监控机制
Ambient Agent 的核心是其强大的事件流监听系统。这个系统能够持续捕捉环境中的各种信号,包括但不限于新邮件的到达、日程变更、系统通知等。通过对这些信号的实时分析,Agent 能够及时发现需要处理的任务。
在信号处理方面,Ambient Agent 采用了复杂的优先级管理机制。它不会对每个信号都立即作出响应,而是会根据预设的规则和上下文来评估任务的重要性和紧急程度,从而决定是否需要立即处理或通知用户。
3.2 人机协作模式
Ambient Agent 设计了三种主要的人机协作模式,分别应对不同的场景需求:
1. Notify(通知)模式用于重要事件的提醒。当 Agent 发现需要用户注意的情况时,会通过合适的方式发出通知。这种通知不同于传统的机械提醒,而是经过智能筛选和整合的,确保不会打扰到用户的注意力。
2. Question(询问)模式在 Agent 需要额外信息才能继续工作时触发。例如,当收到会议邀请时,Agent 会询问用户的参与意向,然后根据答复来安排后续工作。这种交互方式保持了决策的灵活性,同时避免了过度自动化可能带来的问题。
3. Review(审核)模式则用于需要用户确认的重要操作。当 Agent 制定了行动方案后,会将方案提交给用户审核,用户可以选择接受、修改或拒绝。这种机制既保证了操作的安全性,也为 Agent 提供了学习和改进的机会。
3.3 决策机制
在决策方面,Ambient Agent 采用了分层的决策机制。对于日常性、低风险的任务,Agent 可以直接处理;对于需要判断或可能产生重要影响的决策,则会寻求用户的参与。这种机制确保了自动化和人工干预之间的平衡。
4. 实际应用案例
4.1 邮件助理
邮件助理是 Ambient Agent 最典型的应用场景之一。它能够自动分类收到的邮件,识别重要程度,并根据预设的规则采取相应行动。对于常规性的邮件,它可以直接起草回复供用户审核;对于需要特殊处理的邮件,它会及时提醒用户并提供必要的上下文信息。
更重要的是,邮件助理能够与日程管理系统集成,自动处理会议邀请、协调时间安排,甚至主动提醒用户可能存在的日程冲突。这种全方位的协助大大减轻了用户的日常工作负担。
4.2 开发助手
在软件开发领域,像 Devin 这样的 Ambient Agent 展现出了强大的潜力。它能够持续监控代码仓库的变化,自动进行代码审查,发现潜在的问题。当遇到需要开发者注意的情况时,它会主动发出提醒,并提供详细的问题描述和可能的解决方案。
在持续集成过程中,开发助手可以自动运行测试,分析测试结果,并在发现异常时立即通知相关开发者。这种持续的监控和即时反馈机制大大提高了开发团队的工作效率。
5. 人类角色的转变
5.1 从"人在回路中"到"人在回路上"
Ambient Agent 的出现带来了人机协作方式的根本性转变。传统的"人在回路中"(Human-in-the-loop)模式要求人类参与每个决策环节,而新的"人在回路上"(Human-on-the-loop)模式则让人类转向监督者的角色。
这种转变并不意味着人类失去了控制权,相反,它提供了更高效的控制方式。用户可以随时查看 Agent 的工作记录,了解决策过程,并在需要时进行干预。这种透明性和可控性是建立信任的关键基础。
5.2 新型交互界面
为了支持这种新的工作模式,产生了 Agent Inbox 等创新性的交互界面。这种界面集中展示了所有需要人类注意的事项,并按优先级进行组织。用户可以在这里查看 Agent 的工作进展,提供必要的输入,审核关键决策。
这种集中式的管理界面不仅提高了工作效率,还为用户提供了更好的可见性和控制力。通过精心设计的反馈机制,用户可以持续调整 Agent 的行为,使其更好地适应特定的工作需求。
6. 技术实现
6.1 核心组件
Ambient Agent 的技术实现依赖于多个关键组件的协同工作。事件监听系统负责捕捉和分发各种环境信号;状态管理系统维护任务的执行状态和上下文信息;持久化存储则确保了数据的可靠性和连续性。
这些组件需要高度的可靠性和可扩展性,因为它们要支持 Agent 的持续运行和多任务处理能力。同时,它们还需要具备良好的容错能力,确保在出现异常情况时能够妥善处理。
6.2 关键技术
在技术栈方面,像 LangGraph 这样的框架提供了构建 Ambient Agent 所需的基础设施。它支持状态的检查点保存、人机交互的集成,以及长期记忆机制的实现。
长期记忆机制特别重要,因为它使得 Agent 能够从过去的交互中学习,不断改善其决策能力。通过适当的记忆管理,Agent 可以逐步建立起对用户偏好和工作模式的理解。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。