我的问题是宽基什么时候买入?
以下是Chatgpt的回答
1. 选择合适的指数
首先,确定你要买的宽基指数:
-
沪深300(000300)——龙头企业指数,适合稳健投资
-
中证500(000905)——中盘成长指数,适合长期投资
-
上证50(000016)——蓝筹权重股,适合低估布局
-
创业板指(399006)——成长型科技股,波动较大
一般来说,沪深300更适合作为宽基投资的核心。
2. 关键买入点位(基于沪深300)
沪深300指数的历史估值和点位可以作为重要参考。
目前你关心的是“多少点位买入”,我们来看数据:
(1)估值法判断买点
✅ 沪深300的合理买点(基于历史PE分位数)
-
低估区(< 12 倍PE):3600点以下大胆买入
-
合理区(12~14倍PE):3700-4200点可分批买
-
高估区(> 16倍PE):4500点以上谨慎
📌 当前沪深300 PE(动态)大约在10-12倍之间(2024年初数据),处于历史低估区域,这意味着当前已经进入可以买入的区间。
(2)历史点位法
我们来看沪深300的历史底部区域:
-
2008金融危机底部:1800点
-
2013年熊市底部:2100点
-
2018年贸易战底部:3000点
-
2022年疫情底部:3600点
-
2023年底部:3700点
✅ 结论:沪深300在3600点以下是长期买入机会,目前如果接近3600点可以大胆建仓。
3. 具体买入策略
策略1:估值+定投
-
目标点位:3600-4200点内分批买入
-
计划:每跌破100点,加仓20%
-
3600点以下 → 大胆加仓
-
3700点 → 建立基础仓位
-
4000点 → 继续持有,看市场情况加减仓
✅ 适合长期投资,不纠结短期波动。
策略2:左侧交易
如果你喜欢抄底,可以:
-
沪深300跌到3600-3700区间,先买50%仓位
-
跌到3500-3600区间,加30%
-
跌破3500点,满仓买入
✅ 适合喜欢在低位布局的投资者。
策略3:右侧确认
如果不喜欢抄底,可以:
-
等沪深300突破4200点再进场,避免被套
-
等政策或市场情绪转好时,再加仓
✅ 适合稳健投资者,愿意等趋势明朗再进场。
4. 关键风险提示
-
政策影响大:如果遇到政策放水(如降准、降息),可能推动指数上涨,不要等太久才进场。
-
市场情绪波动大:A股市场容易受情绪影响,短期可能超跌但长期看整体趋势向上。
-
全球市场影响:如果美股大跌,A股可能受拖累,可关注全球市场风险。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。