清华一作1B暴打405B巨无霸,7B逆袭DeepSeek R1!测试时Scaling封神

仅凭测试时Scaling,1B模型竟完胜405B!多机构联手巧妙应用计算最优TTS策略,不仅0.5B模型在数学任务上碾压GPT-4o,7B模型更是力压o1、DeepSeek R1这样的顶尖选手。

今天,一篇多机构联合发表的论文,在AI圈引起轰动。

凭借重新思考计算最优的测试时Scaling,1B模型竟然超越了405B?

随着OpenAI o1证明了测试时扩展(TTS)可以通过在推理时分配额外算力,大幅增强LLM的推理能力。测试时计算,也成为了当前提升大模型性能的最新范式。

那么,问题来了:

  1. 在不同的策略模型、过程奖励模型和问题难度级别下,如何最优地扩展测试时计算?

  2. 扩展计算在多大程度上可以提高大语言模型在复杂任务上的表现,较小的语言模型能否通过这种方法实现对大型模型的超越?

对此,来自清华、哈工大、北邮等机构的研究人员发现,使用计算最优TTS策略,极小的策略模型也可以超越更大的模型——

在MATH-500和AIME24上,0.5B模型的表现优于GPT-4o;3B模型超越了405B模型;7B模型直接胜过o1和DeepSeek-R1,还具有更高的推理性能。

论文地址:https://arxiv.org/abs/2502.06703

这就表明,TTS是增强LLM推理能力的一种极有前途的方法。

同时,这也体现了研究真正的「弱到强」方法,而非当前的「强到弱」监督,对策略优化的重要性。

重新思考「计算最优」的测试时Scaling

计算最优的扩展策略应当是奖励感知的

计算最优的测试时Scaling,旨在为每个问题分配最优计算资源。

根据此前的研究,一种方法是使用单一的PRM作为验证器在策略模型的响应上训练PRM并将其用作验证器,以对同一策略模型进行TTS;另一种方法则是使用在不同策略模型上训练的PRM来进行TTS。

从强化学习(RL)的角度来看,前者获得的是在线PRM,后者则是离线PRM。

在线PRM能为策略模型的响应产生更准确的奖励,而离线PRM由于分布外(OOD)问题往往会产生不准确的奖励。

对于计算最优TTS的实际应用而言,为每个策略模型训练一个用于防止OOD问题的PRM在计算上是昂贵的。

因此,研究人员在更一般的设置下研究计算最优的TTS策略,即PRM可能是在与用于TTS的策略模型不同的模型上训练的。

对于基于搜索的方法,PRM指导每个响应步骤的选择,而对于基于采样的方法,PRM在生成后评估响应。

这表明:(1)奖励影响所有方法的响应选择;(2)对于基于搜索的方法,奖励还会影响搜索过程。

为分析这些要点,团队使用Llama-3.1-8BInstruct作为策略模型,RLHFlow-PRM-Mistral-8B和RLHFlow-PRM-Deepseek-8B作为PRM,进行了一项初步的案例研究。

奖励会显著影响生成的过程和结果

RLHFlow-PRM-Mistral-8B对短响应给予高奖励,却产生了错误的答案;而使用RLHFlow-Deepseek-PRM-8B进行搜索虽然产生正确答案,但使用了更多token。

基于以上发现,研究人员提出奖励应该被整合到计算最优的TTS策略中。将奖励函数表示为ℛ,奖励感知计算最优TTS策略表述如下:

其中Target(𝜃, 𝑁, 𝑥, ℛ)表示在计算预算𝑁和提示词𝑥条件下,由奖励函数ℛ调整的策略模型𝜃输出分布。对于基于采样的扩展方法,Target(𝜃, 𝑁, 𝑥, ℛ) = Target(𝜃, 𝑁, 𝑥)。

这种奖励感知策略确保计算最优扩展能够适应策略模型、提示词和奖励函数,从而为实际的TTS提供了一个更具普适性的框架。

绝对问题难度标准比分位数更有效

团队发现,使用来自MATH的难度等级或基于Pass@1准确率分位数的oracle标签并不有效,这是因为不同的策略模型存在不同的推理能力。

如下图所示,Qwen2.5-72B-Instruct在76.2%的MATH-500问题上实现了超过80%的Pass@1准确率。

因此,团队选择使用绝对阈值,而不是分位数来衡量问题难度。即基于Pass@1准确率,定义三个难度等级:简单(50%100%)、中等(10%50%)和困难(0%~10%)。

如何最优地Scaling测试时计算?

Q1:如何通过不同的策略模型和PRM来提升TTS?

对于Llama-3.1-8B-Instruct模型,研究团队使用Skywork和Qwen2.5-Math PRM的搜索方法在计算预算增加时性能显著提升,而使用Math-Shepherd和RLHFlow PRM的搜索方法则效果较差。

对于Qwen2.5-7B-Instruct模型,使用Skywork-PRM-7B和Qwen2.5-Math PRM的搜索方法性能随计算预算增加而提升,而使用其他的PRM性能仍然较差。

在AIME24数据集上,虽然两个策略模型的Pass@k准确率随着计算预算的增加而提高,但TTS的性能改进仍然有限。这表明PRM在不同策略模型和任务间的泛化能力是一个挑战,尤其是在更复杂的任务上。

研究团队发现当使用Math-Shepherd和RLHFlow PRM时,Best-of-N (BoN) 方法通常优于其他策略。而当使用Skywork和Qwen2.5-Math PRM时,基于搜索的方法表现更好。

这种差异可能源于PRM在处理OOD(超出分布)策略响应时效果不佳,因为PRM在不同策略模型间的泛化能力有限。使用OOD PRM进行每一步的选择时可能会导致答案陷入局部最优,从而降低性能。

不过,PRM的基础模型也可能是一个影响因素,例如,使用Qwen2.5-Math-7B-Instruct训练的PRM比使用Mistral和Llama作为基础模型的PRM泛化能力更好。

下图4和5说明了PRM的选择对于TTS的效果至关重要,并且最佳的TTS策略会随着使用的PRM的不同而改变,同时验证了PRM在不同策略模型和数据集之间的泛化能力也是一个挑战。

研究团队发现,TTS的性能与PRM的过程监督能力之间存在正相关。具体来说,PRM的过程监督能力越强,其在TTS中通常能带来更好的性能。

团队拟合了一个函数来描述这种关系,结果说明了 PRM 的过程监督能力对TTS性能的重要性。

下图6表明,PRM的过程监督能力是决定其在TTS中性能的关键因素。这为开发更有效的PRM提供了方向:应该注重提高PRM的过程监督能力,而不仅仅是增加参数量。

为了得到最优的TTS方法,研究中使用了Qwen2.5系列的不同大小LLM(从0.5B到72B)进行实验。

结果显示,对于小型策略模型,基于搜索的方法优于BoN3。而对于大型策略模型,BoN比基于搜索的方法更有效。

这可能是因为大型模型具有更强的推理能力,不需要验证器逐步选择。而小型模型则依赖于验证器来选择每一步,以确保中间步骤的正确性。

下图7表明最优的TTS方法依赖于策略模型的大小,在选择TTS方法时需要考虑模型的推理能力。

Q2:TTS在不同难度问题上的改进情况如何?

如前所述,团队基于Pass@1准确率的绝对值将难度级别分为三组:简单(50%100%)、中等(10%50%)和困难(0%~10%)。

最优的TTS方法随难度级别的不同而变化,结果如下图所示。

  • 对于小规模策略模型(参数少于7B),BoN在简单问题上表现更优,而束搜索在较难问题上效果更好。

  • 对于参数在7B到32B之间的策略模型,DVTS在简单和中等问题上表现出色,而束搜索更适合困难问题。

  • 对于具有72B参数的策略模型,BoN是适用于所有难度级别的最佳方法。

上下滑动查看

Q3:偏好奖励模型PRM是否对特定响应长度存在偏差或对投票方法敏感?

PRM对步骤长度存在偏差

研究团队发现,即使在实验中使用相同的计算预算进行TTS,使用不同PRM在推理中产生的token数量差异显著。

例如,在相同预算和相同策略模型的情况下,使用RLHFlow-PRM-Deepseek-8B进行扩展的推理token数量始终比使用RLHFlow-PRM-Mistral-8B多近2倍。

这种差异与 PRM 的训练数据有关。RLHFlow系列PRM的训练数据来自不同的大语言模型,这可能导致它对输出长度产生偏差。

为了验证这一观点,研究团队分析了RLHFlow-PRM-Mistral-8B3和RLHFlow-PRM-Deepseek-8B4训练数据的几个特性。

如表1所示,DeepSeek-PRM-Data的每个响应平均token数和每个步骤平均token数都大于Mistral-PRM-Data,这表明RLHFlow-PRM-Deepseek-8B的训练数据比RLHFlow-PRM-Mistral-8B的更长。这可能导致对输出长度的偏差。

研究团队还发现,使用Qwen2.5-Math-7B进行扩展的推理token数量大于使用Skywork-PRM-7B的数量,但性能非常接近,这表明使用Skywork-PRM-7B进行搜索更有效率。

PRM对投票方法具有敏感性

从表2的结果可以看出,Skywork-PRM-7B使用PRM-Vote比使用PRM-Max效果更好,而Qwen2.5-Math-PRM-7B对投票方法不太敏感。

这主要是因为Qwen2.5-Math PRM的训练数据经过了LLM-as-a-judge(将大语言模型作为判断器)处理,该处理移除了训练数据中被标记为正样本的错误中间步骤,使得输出的高奖励值更可能是正确的。

这表明PRM的训练数据对提升其在搜索过程中发现错误的能力具有重要意义。

「计算最优」的测试时Sclaing

在计算最优TTS策略下,研究人员就另外三大问题,进行了实验评估。

Q4:较小的策略模型,能否在计算最优TTS策略下优于较大的模型?

对小型策略模型进行测试时计算的扩展,对提升LLM的推理性能至关重要。

那么,较小的策略模型能否通过计算最优的TTS策略,超越更大的模型,如GPT-4o、o1、DeepSeek-R1?

如下表3所示,研究人员得出了4点关键的洞察:

1. 采用计算最优TTS策略后,在两大数学基准MATH-500和AIME24上,Llama-3.2-3B-Instruct性能碾压Llama-3.1-405B-Instruct。

从这点可以看出,较小模型通过计算最优TTS策略,可超越大135倍的模型。

与此前谷歌Charlie Snell团队等TTS相关研究相比,新方法将结果提升了487.0%(23倍→135倍)。

2. 将计算预算增加到N=512,同样采用计算最优TTS的Llama-3.2-1B-Instruct,在MATH-500基准上击败了Llama-3.1-405B-Instruct。

奇怪的是,在AIME24上,它的性能又不如Llama-3.1-405B-Instruct。

3. 采用计算最优TTS,Qwen2.5-0.5B-Instruct、Llama-3.2-3B-Instruct均超越了GPT-4o。

这表明,小模型可以通过计算最优TTS策略,也能一举超越GPT级别的大模型。

4. 在同样策略和基准下,DeepSeek-R1-Distill-Qwen-1.5B竟能碾压o1-preview、o1-mini。

同时,DeepSeek-R1-Distill-Qwen-7B还能击败o1和DeepSeek-R1。

以上这些结果表明,经过推理增强的小模型可以,通过计算最优TTS策略超越前沿推理大模型。

再来看下这些模型FLOPS比较,如下表4所示,小型策略模型即使在使用更少推理FLOPS的情况下,也能超越大型模型,并将总FLOPS减少了100-1000倍。

Q5:计算最优TTS与CoT和多数投票相比有何改进?

如下表5展示了,每个策略模型在MATH-500上的计算最优TTS结果。

结果发现,计算最优TTS的效率可以比多数投票高256倍,并且相比CoT提升了154.6%的推理性能。

这些结果表明,计算最优TTS显著增强了LLM的推理能力。

然而,随着策略模型参数数量的增加,TTS的改进效果逐渐减小。这表明,TTS的有效性与策略模型的推理能力直接相关。

具体来说,对于推理能力较弱的模型,Scaling测试时计算会带来显著改进;而对于推理能力较强的模型,提升效果则较为有限。

Q6:TTS是否比基于长CoT的方法更有效?

如下表6所示,研究人员发现,在MATH-500和AIME24基准上,使用Qwen2.5-7B-Instruct的TTS都优于rStar-Math、Eurus-2、SimpleRL和Satori。

然而,虽然TTS在MATH-500上的表现,接近DeepSeek-R1-Distill-Qwen-7B,但在AIME24上表现出明显下降。

这些结果表明,TTS比直接在MCTS生成数据上,应用RL或SFT的方法更有效,但不如从强大的推理模型中进行蒸馏的方法有效。

另外,TTS在较简单的任务上,比在更复杂的任务上更有效。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值